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In this article, we analyze a magnetic monopole in topological insulators. The monopole obtain a
fractional electric charge because of the Witten effect. We consider this system with a microscopic
view by adding the Wilson term to the ordinary Dirac Hamiltonian. The Wilson term yields
the positive mass shift to the effective mass of the electrons, then the curved domain-wall is
dynamically generated around the monopole. The zero-modes of the electrons are localized on
the domain-wall, which can be identified as the source of the electric charge.

The 40th International Symposium on Lattice Field Theory (Lattice 2023)
July 31st - August 4th, 2023
Fermi National Accelerator Laboratory

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
3
6
3

https://pos.sissa.it/


P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
3
6
3

P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
3
6
3

A Microscopic study of Magnetic monopoles in Topological Insulators Naoto Kan

1. Introduction

A magnetic monopole has been intensively studied in particle physics. In Maxwell theory, the
monopole can be seen as a heavy point-like object with magnetic charge, i.e., the Dirac monopole
[1], and the world line of the monopole is referred as the ’t Hooft loop. In the modern sense, the
’t Hooft loop operator is the charged object of the one-form magnetic symmetry in Maxwell theory.
In grand unified theories, the monopole can be appeared as the ’t Hooft–Polyakov monopole which
induces the proton decay [2, 3].

We explore a behavior of the magnetic monopole in the so-called θ vacuum. It is known that
the monopole dresses electric charge in the non-zero θ vacuum, which is called the Witten effect
[4]1. The dressed electric charge, in general, becomes fractional. The non-zero θ angle can be
realized by introducing the axion field, but the following issues we study in this article are unclear
in the effective field theoretical description: (1) what is the origin of the electric charge (it must be
electrons, but unclear), (2) why the electron is bound to the monopole, (3) why the electric charge
is fractional.

In this article, we focus on the θ = π vacuum, which is known that the vacuum describes the
time-reversal symmetric topological insulator. From the view point of a microscopic description2,
we address the three issues mentioned above. As a result of introducing the Wilson term to the
Hamiltonian, we will find an interpretation of our issues. Because of the positive correction to the
effective mass from the Wilson term, the curved domain-wall3 is dynamically created around the
monopole [24]. The chiral zero-modes of the electron are localized on the created domain-wall and
bound to the monopole. Due to the cobordism invariant nature of the Atiyah–Singer index, another
domain-wall is required. Since the 50% of the wavefunction is located on the domain-wall around
the monopole, we observe the fractional electric charge.

2. A monopole in three-dimensions

2.1 A naive Dirac equation with a monopole

We start with solving the naive Dirac equation in the magnetic monopole background. The
Dirac Hamiltonian is

H = γ0

(
γi (∂i − iAi) + m

)
, (1)

where the gamma matrices are defined by γ0 = σ3 ⊗ 1 and γi = σ1 ⊗ σi. Let us put the Dirac
monopole with magnetic charge qm at the origin. Then the background gauge connection is given
by

A1 = − qmy
r(r + z), A2 =

qmx
r(r + z), A3 = 0. (2)

Note that the magnetic charge is quantized, qm = Z/2, due to the Dirac quantization condition. The
Hamiltonian commutes with the total angular momentum Ji,

Ji = Li +
σi
2
, Li = −iεi jk xj (∂k − iAk) −

qmxi
r
, (3)

1See also related recent studies [5–16]
2We find Refs. [17–20] on the microscopic approach in condensed matter physics.
3The curved domain-wall fermion is also studied in Refs. [21–23]
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with [Ji, Jj] = iεi jk Jk , where Li is the orbital angular momentum. As usual, we use 1 ⊗ J3 to
parameterize the eigenstates. The square of the total angular momentum also commutes with the
Hamiltonian: [1 ⊗ J2,H] = 0. In addition, there is another operator which commutes with H and
1 ⊗ Ji. We define the “spherical” operator as

DS2
= σi

(
Li +

qmxi
r

)
+ 1. (4)

We will see a physical meaning of this operator later. We can easily check [σ3 ⊗ DS2
,H] = 0 and

[Ji,DS2] = 0.
Let us solve the Dirac equation, Hψ = Eψ. We find the normalizable zero-mode (E = 0)

solution localized at the origin with j = |qm | − 1/2:

ψj, j3,0(r, θ, φ) =
C
r

e− |m |r
(

1
sign(m) sign(qm)

)
⊗ χj, j3,0(θ, φ), (5)

where we introduced the eigenstate of DS2 satisfying DS2
χj, j3,0 = 0. The solution is bound to

monopole, but it still not enough to explain the following issues: The solution Eq. (5) can exist for
both positive and negative mass. The Witten effect predicts that the monopole becomes dyon in the
topological insulator with m < 0, but not in the normal insulator with m > 0. We cannot describe
this prediction in the microscopic sense unless we impose the chiral boundary condition at the origin
by hand. It also remains unclear why the electric charge becomes fractional. In Ref. [20], summing
all charges within the Dirac sea and comparing it to the charge configuration in the absence of a
monopole yields half of an electric charge, yet this can only be achieved following a regularization
process that disrupts charge conservation.

2.2 A regularized Dirac equation

To explore the issues we saw at the end of the previous section, let us define the regularized
Dirac Hamiltonian,

Hreg = H + γ0
D†
i Di

MPV
= γ0

(
γiDi + m +

D†
i Di

MPV

)
. (6)

The physical meaning of the new term we added is as follows. In continuum field theory, to obtain
finite results, we must regularize the theory. We now regularize our theory using the Pauli–Villars
(PV) regularization. Then the partition function is given by

Z = det
( /D + m
/D + MPV

)
= det

[
1

MPV

(
/D + m +

D†
µDµ

MPV
+ O(1/M2

PV,m/MPV, Fµν/MPV)
)]
, (7)

where MPV is the mass of the PV field 4. Thus we can interpret the term we added to the Hamiltonian
as the leading term of the large MPV expansion. We refer the additional term as the Wilson term
since the Laplacian corresponds to the Wilson term in lattice gauge theory.

4Precisely, in order to completely regularize the theory, we have to introduce multiple PV fields. However, a single
PV field is sufficient for our current purpose.
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Before finding the zero-mode eigenstates of the regularized Hamiltonian Hreg, let us see the
role of the Wilson term schematically. Since the Laplacian D†

i Di is alway positive, the mass shift
due to the Wilson term is also always positive when we take MPV positive. In the topological
insulator with m < 0, the Wilson term can change the sign of the effective mass,

m < 0 → meff = m +
D†
i Di

MPV
∼ m +

1
MPVr2

1
> 0, (8)

when the magnetic flux is concentrated in the region r < r1. It implies that the inner region r < r1
becomes a normal insulator, and the spherical domain-wall is dynamically created and the chiral
edge-modes appear on it. Note that this does not happen in the normal insulator with m > 0 since
we have no sign flip of the mass around the monopole.

Let us investigate the regularized Dirac Hamiltonian with the monopole background Eq. (2).
The rotational symmetry is still genuine, [Hreg, 1⊗ Ji], but the spherical operator does not commute
with the Laplacian: [DS2

,D†
i Di] ! 0. We find solution of the zero-mode for r1 → 0,

ψmono
j, j3

(r, θ, φ) = Be−MPVr/2
√

r
Iν(κr)

(
1

− sign(qm)

)
⊗ χj, j3,0(θ, φ), (9)

where ν =
√

4|qm | + 1/2, κ = MPV
√

1 + 4m/MPV/2, and Iν(z) is the modified Bessel function
of the first kind. We note that since Iν(κr) ∼ exp(MPVr/2 − |m|r)/

√
πMPVr in the MPV → ∞

limit, the solution coincides with the naive solution Eq. (5). We also note that the solution has a
peak at r = |qm |/MPV only when the mass m is negative. As is expected, this implies that the the
domain-wall is created by the Wilson term. We show the the zero-mode solution with and without
the Wilson term in Fig. 1. We have set the parameters with qm = 1/2, m = −0.1 and MPV = 10.

|ψNaive | 2

|ψWilson | 2

0.5 1.0 1.5 2.0 r

0.05

0.10

0.15

0.20

|ψ| 2

Figure 1: The plot of the zero-mode solution with the Wilson term in Eq. (9) and without the Wilson term
in Eq. (5). We set qm = 1/2, m = −0.1 and MPV = 10. Figure from Ref. [24].

2.3 Half-integral charge

So far, we implicitly considered a R3 space, but to discuss nature of topology, we need to
compactify the space on a S3. Then topological insulator region with meff < 0 seems to have the
topology of a disk D3 with a small S2 boundary at r = r1. However, due to the cobordism invariance
of the Atiyah–Singer index, the index must be zero:

Ind DS2
=

1
4π

∫
S2

F =
1

4π

∫
D3

dF = 0, (10)
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which contradicts with Ind DS2
= 2qm if there are the only chiral zero modes. A resolution is to

create another domain-wall at, say, r = r0, outside of the topological insulator. Another zero-modes
are localized at the outside domain-wall, and the index is kept trivial:

∫
M

dF =
∫
S2

mono∪S2
out

F = 0, (11)

where M is the region of the topological insulator, S2
mono and S2

out correspond to the domain-wall
around the monopole and outside domain-wall, respectively. The zero modes localized on S2

mono and
on S2

out are mixed by the tunneling effect for finite r0, i.e., ψ = αψmono
j, j3
+ βψDW

j, j3
, where α and β are

constant coefficients which parameterize the mixing, ψmono/DW
j, j3

are the localized zero modes around
the monopole/outside domain-wall. We can show that (ψmono

j, j3
)†Hψmono

j, j3
= (ψDW

j, j3
)†HψDW

j, j3
= 0 for

the diagonal parts and (ψmono
j, j3

)†HψDW
j, j3
= (ψDW

j, j3
)†Hψmono

j, j3
=: ∆ ∈ R for the off-diagonal perts. Then

we can obtain that α = ±β and the split energy is E = ±∆. As a result, the 50% of the zero mode
state is located at the monopole, while the other is sit at the outside domain-wall, thus the dressed
electric charge of the monopole becomes half-integer.

3. Numerical results

3.1 Lattice setup

We prepare the three-dimensional hyper-cubic lattice with size L = 315. Imposing on open
boundary conditions, we put a monopole at x = xm = (L/2, L/2, L/2) and anti-monopole at
x = xa = (L/2, L/2, 1/2). The continuum vector potential at x = (x, y, z) is given by

A1(x) = qm

[
−(y − ym)

|x − xm |(|x − xm | + (z − zm))
− −(y − ya)

|x − xa |(|x − xa | + (z − za))

]
, (12)

A2(x) = qm

[
x − xm

|x − xm |(|x − xm | + (z − zm))
− x − xa

|x − xa |(|x − xa | + (z − za))

]
, (13)

A3(x) = 0, (14)

with qm ∈ Z/2. We assume a position-dependent mass m(x) for fermions. We set negative mass
m(x) = −m0 for r =

√
|x − xm | < r0 = 3L/8, while positive mass m(x) = +m0 for r > r0 with

m0(L + 1) = 14. The Wilson Dirac Hamiltonian is given by

HWilson = γ
0

[ 3∑
i=1

(
γi
∇ f
i + ∇b

i

2
− 1

2
∇ f
i ∇

b
i

)
+ m(x)

]
, (15)

where the forward covariant difference is ∇ f
i ψ(x) = Ui(x)ψ(x + ei) − ψ(x), and the backward

difference is ∇b
i ψ(x) = ψ(x) − U†

i (x − ei)ψ(x − ei). The link variable Uj(x) is defined as

Uj(x) = exp
(
i
∫ 1

0
Aj(x + e j l)dl

)
. (16)

5In Ref. [24], we studied the three cases with L = 23, 31 and 47.
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3.2 Numerical analises

We compute the energy eigenvalues and eigenfunctions of HWilson with qm = 1/2 and as Ek

and φk(x), respectively. We plot the eigenvalues Ek in units of r0 in Fig. 2. We show the results of
the continuum calculation without the Wilson term by cross symbols. We also show the chirality
expectation value measured by

∑
x

φ†
k
(x) (σ1 ⊗ σr ) φk(x) (17)

using the color gradation. We find the two nearest zero-modes.
In the left panel of Fig. 3, we plot the local amplitude of the (nearest) zero-mode,

A1(x) = φ1(x)†φ1(x)r2 (18)

normalized by r2 at the z = 16 slice. The amplitude has two peaks around r = 0 and r = r0. The
50% of the state is located around the monopole, while the other 50% is located at r = r0, which
implies that we observe the half electric charge.

In the right of Fig. 3, the distribution of the local effective mass

meff(x) = φ1(x)†
(
−1

2

∑
i

∇ f
i ∇

b
i + m(x)

)
φ1(x)r2/A1(x) (19)

at the z = 16 slice is plotted, as well. We see that the small island of the normal insulator, i.e., the
positive mass region appears around the monopole; the domain-wall is dynamically created.

Figure 2: The spectrum of the energy eigenvalue Ek with magnetic charge qm = 1/2. Figure from Ref. [24]

4. Summary

In this article, we have microscopically studied the magnetic monopole in the topological
insulators. In the analysis of the naive Dirac equation, it is possible to find the zero mode solution
localized around a monopole. However, the solution cannot satisfactorily explain why the Witten
effect occurs only when the fermion mass is negative, and why the electric charge dressed by the
monopole becomes fractional. To explain this, we have considered a regularized Hamiltonian with
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Figure 3: Left panel: the amplitude of the nearest zero-mode A1(x) at z = 16 with qm = 1/2. Right panel:
the local effective mass of the nearest zero-mode meff(x). Figure from Ref. [24]

the Wilson term. Due to the effects of the Wilson term, the domain wall is created around the
monopole only when the fermion mass is negative. As a result, the zero modes localize on the
domain wall. Furthermore, the cobordism invariance of the Atiyah–Singer index theorem requires
the existence of the outside domain wall, and we have concluded that the 50% of the wavefunction
of the zero modes are localized around the monopole, so that the electric charge becomes fractional.
we have also numerically analyzed the creation of the domain-wall around the monopole and the
emergence of the chiral zero modes.
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