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1. Introduction

Symmetry is one of the most important ideas in physics. It is also quite essential to understand a
phenomenon of symmetry breaking, e.g., the quantum anomaly. When a gauge symmetry, to which
a global symmetry is promoted, is anomalous, such an anomaly is called the ’t Hooft anomaly [1].
The ’t Hooft anomaly is invariant under the renormalization group and its matching condition
between different energy scales plays an important role to restrict the low energy dynamics of gauge
theories. It is quite interesting to apply this idea to nonperturbative phenomena in strongly coupled
field theories such as QCD.

Recently, the notion of symmetry has been largely generalized [2]. In recent studies, the
existence of a symmetry is regarded as being equivalent to the existence of a topological defect.
Here, the topological defect is an object such that it is invariant under the deformation of a surface
to which the definition of the defect refers. For traditional symmetries, the surface of the defect
is co-dimension 1. As a generalization, we define a 𝑝-form symmetry on a co-dimension (𝑝 + 1)
surface. Let us focus on the 𝑆𝑈 (𝑁) gauge theory with the 𝜃 term. This theory has the mixed ’t Hooft
anomaly between the Z𝑁 1-form symmetry and the time-reversal symmetry when 𝜃 = 𝜋 [3]. Then,
one finds that the phase structures at 𝜃 = 0 and 2𝜋 are distinguishable according to monopole or
dyon condensation. Now, the important point is that, in this theory coupled to Z𝑁 2-form gauge
fields associated with the 1-form symmetry, the topological charge becomes fractional instead of
integral.1

Various studies of anomaly matching associated with the generalized symmetry are vigorously
carried out in many quantum field theories (QFTs). However, since QFTs include an infinite
number of degrees of freedom, it is difficult to fully define QFTs with interactions mathematically
as it stands. Due to this issue, the perturbation theory, which is a promising technique in a
broad sense of physical systems, suffers from ultraviolet divergences in perturbative coefficients.
One may use a regularization method based on the perturbation theory while it is too tough
to address nonperturbative phenomena, e.g., the quark confinement in QCD. A well-established
nonperturbative regularization is now provided by lattice gauge theory.

In this talk, we aim to understand the above consequences through ’t Hooft anomaly matching
with generalized symmetries in completely regularized theories. A gauge-invariant nonperturbative
regularization is provided by lattice gauge theory. First, we review Lüscher’s construction of the
topological sectors on the lattice in Sect. 2. Then, in Sect. 3, extending this Lüscher’s construction,
we construct the fractional topological charge in the lattice 𝑆𝑈 (𝑁) gauge theory coupled with
2-form gauge fields.2 In addition, this fractional topological charge is manifestly invariant under
the Z𝑁 1-form symmetry. By using this lattice fractional topological charge, we obtain the lattice
action with the 𝜃 term and derive the anomalous relation for the Yang–Mills partition function on
the lattice [7].

1This fractional topological charge is well-known for long time [4, 5] and the fractionality is caused by twisted
boundary conditions associated with the magnetic flux.

2We also construct the fractional topological charge with the𝑈 (1)/Z𝑞 principal bundle on the lattice gauge theory [6].
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2. Review of Lüscher’s construction of the lattice topological charge

In the lattice gauge theory, basic degrees of freedom are link variables 𝑈𝑙 = 𝑈 (𝑛, 𝜇), where 𝑙

means a link connecting two sites 𝑛 and 𝑛 + �̂�. Here, we define the minimal constituents which are
invariant under the 𝑆𝑈 (𝑁) gauge transformation: 𝑈 (𝑛, 𝜇) ↦→ 𝑔−1

𝑛 𝑈 (𝑛, 𝜇)𝑔𝑛+�̂� for 𝑔𝑛 ∈ 𝑆𝑈 (𝑁),

𝑈𝑝 = 𝑈𝜇𝜈 (𝑛) ≡ P
∏
𝑙∈𝜕𝑝

𝑈𝑙 = 𝑈 (𝑛, 𝜇)𝑈 (𝑛 + �̂�, 𝜈)𝑈 (𝑛 + �̂�, 𝜇)−1𝑈 (𝑛, 𝜈)−1, (1)

where 𝑝 denotes a plaquette. For this plaquette variable 𝑈𝑝, the 𝑆𝑈 (𝑁) gauge transformation acts
as 𝑈𝑝 ↦→ 𝑔−1

𝑛 𝑈𝑝𝑔𝑛 where 𝑛 denotes the initial and final point of the closed loop for 𝑝. At this time,
the value tr

(
𝑈𝑝

)
is invariant under the 𝑆𝑈 (𝑁) gauge transformation. Then, we define the Wilson

plaquette action as

𝑆𝑊 [𝑈𝑙] ≡
∑
𝑝

𝛽
[
tr
(
1l −𝑈𝑝

)
+ c.c.

]
. (2)

where 𝛽 is the coupling constant for the lattice 𝑆𝑈 (𝑁) gauge theory. This action is manifestly
invariant under the 𝑆𝑈 (𝑁) gauge transformation.

Now, let us add the so-called 𝜃 term, 𝑖𝜃𝑄top, to the above Wilson action, where 𝑄top is the
topological charge defined below. Note that this topological term acts only on the boundary, but
actually it makes the structure of the original theory quite rich owing to nontrivial homotopy such
as instanton. With a set of hyper-cubic unit cells as a special covering, the definition of topological
charge is given by [5, 8]3

𝑄top [𝑈ℓ] ≡
∑
𝑛∈Λ𝐿

𝑞(𝑛), (5)

where

𝑞(𝑛) = − 1
24𝜋2

∑
𝜇,𝜈,𝜌,𝜎

𝜀𝜇𝜈𝜌𝜎

∫
𝑓 (𝑛,𝜇)

d3𝑥 tr
[
(𝑣−1

𝑛,𝜇𝜕𝜈𝑣𝑛,𝜇)(𝑣−1
𝑛,𝜇𝜕𝜌𝑣𝑛,𝜇) (𝑣−1

𝑛,𝜇𝜕𝜎𝑣𝑛,𝜇)
]

− 1
8𝜋2

∑
𝜇,𝜈,𝜌,𝜎

𝜀𝜇𝜈𝜌𝜎

∫
𝑝 (𝑛,𝜇,𝜈)

d2𝑥 tr
[
(𝑣𝑛,𝜇𝜕𝜌𝑣−1

𝑛,𝜇)(𝑣−1
𝑛−�̂�,𝜈𝜕𝜎𝑣𝑛−�̂�,𝜈)

]
. (6)

Here, 𝑣𝑛,𝜇 (𝑥) denotes the transition function at 𝑥 in the overlap 𝑓 (𝑛, 𝜇) of patches beside each other
as illustrated in Fig. 1. Naively it is a gauge transformation function from the “gauge field” at 𝑥 ∈
𝑐(𝑛 − �̂�) to that at 𝑥 ∈ 𝑐(𝑛), or rather we construct 𝑣𝑛,𝜇 (𝑥) at any 𝑥 from 𝑈ℓ . Equation (6) provides
the definition of the lattice topological charge and reproduces 1

16𝜋2

∫
𝑇 4 d4𝑥 𝜀𝜇𝜈𝜌𝜎 tr

(
𝐹𝜇𝜈𝐹𝜌𝜎

)
∈ Z

in the continuum limit, where 𝐹𝜇𝜈 is a field strength.

3In this paper, we work on the 4-torus 𝑇4 and its hyper-cubic lattice discretization Λ𝐿 . In addition, we define some
variables on the hyper-cubic structure as follows: The unit cell is denoted as

𝑐(𝑛) =
{
𝑥 ∈ 𝑇4 �� 0 ≤ 𝑥𝜇 − 𝑛𝜇 ≤ 1 for 𝜇 = 1, . . . , 4

}
(3)

for 𝑛 ∈ Λ𝐿 , and we would like to define the transition function on each face 𝑓 (𝑛, 𝜇) = 𝑐(𝑛) ∩ 𝑐(𝑛 − �̂�), where �̂� is the
unit vector along the 𝜇th direction. Moreover, we define the cocycle condition on 𝑝(𝑛, 𝜇, 𝜈) = 𝑐(𝑛) ∩ 𝑐(𝑛 − �̂�) ∩ 𝑐(𝑛 −
�̂�) ∩ 𝑐(𝑛 − �̂� − �̂�) as follows:

𝑣𝑛−�̂�,𝜇 (𝑛)𝑣𝑛,𝜈 (𝑛)𝑣𝑛,𝜇 (𝑛)−1𝑣𝑛−�̂�,𝜈 (𝑛)−1 = 1l. (4)
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𝑓 (𝑛, 𝜇)

𝑛

𝑝(𝑛, 𝜇, 𝜈)

𝑈 (𝑛, 𝜇)

𝑣𝑛,𝜇 (𝑥)

𝑐(𝑛 − �̂�) 𝑐(𝑛)

𝑥𝜇

𝑥𝜈

𝑥𝜌

Figure 1: Illustration for the definition of variables on the lattice such as 𝑐(𝑛), 𝑓 (𝑛, 𝜇), 𝑝(𝑛, 𝜇, 𝜈).

There are, however, two obstacles to construct 𝑣𝑛,𝜇 (𝑥). First, a configuration of lattice fields
can be connected to other configurations under continuum deformations, and hence the lattice
topological charge is not necessarily an integer. How can we calculate the integral topological
charge on the lattice? The answer has already been presented by Lüscher [8]. Restricting the gauge
field on the lattice to being smooth, we can find that the topological charge on the lattice becomes
an integer. This condition of smoothness is called the admissibility condition:1l −𝑈𝑝

 < 𝜀, (7)

where ∥ · ∥ refers to the matrix norm and 𝜀 is any small positive number independent of the coupling
constant and the size of the lattice. For instance, it is known that in the 𝑆𝑈 (2) gauge theory,
𝜀 = 0.03.

Secondly, in order to calculate the topological charge, the transition function 𝑣𝑛,𝜇 in Eq. (6)
should be the continuum function of the coordinate 𝑥 not only of the corner 𝑛. Here, it is straight-
forward for 𝑣𝑛,𝜇 (𝑛) to be identical to 𝑈 (𝑛 − �̂�, 𝜇). Again, Lüscher provided the explicit expression
of 𝑣𝑛,𝜇 (𝑥) in terms of the interpolation function 𝑆𝑚𝑛,𝜇 (𝑥) (𝑚 = 𝑛 or 𝑛 − �̂�) as follows:

𝑣𝑛,𝜇 (𝑥) = 𝑆
𝑛−�̂�
𝑛,𝜇 (𝑥)−1𝑣𝑛,𝜇 (𝑛)𝑆𝑛𝑛,𝜇 (𝑥), (8)

where

𝑓 𝑚𝑛,𝜇 (𝑥𝛾) =(𝑢𝑚𝑠3𝑠0)
𝑦𝛾 (𝑢𝑚𝑠0𝑠3𝑢

𝑚
𝑠3𝑠7𝑢

𝑚
𝑠7𝑠2𝑢

𝑚
𝑠2𝑠0)

𝑦𝛾𝑢𝑚𝑠0𝑠2 (𝑢
𝑚
𝑠2𝑠7)

𝑦𝛾 , (9)
𝑔𝑚𝑛,𝜇 (𝑥𝛾) =(𝑢𝑚𝑠5𝑠1)

𝑦𝛾 (𝑢𝑚𝑠1𝑠5
𝑢𝑚𝑠5𝑠4𝑢

𝑚
𝑠4𝑠6

𝑢𝑚𝑠6𝑠1)
𝑦𝛾𝑢𝑚𝑠1𝑠6

(𝑢𝑚𝑠6𝑠4)
𝑦𝛾 , (10)

ℎ𝑚𝑛,𝜇 (𝑥𝛾) =(𝑢𝑚𝑠3𝑠0)
𝑦𝛾 (𝑢𝑚𝑠0𝑠3𝑢

𝑚
𝑠3𝑠5

𝑢𝑚𝑠5𝑠1𝑢
𝑚
𝑠1𝑠0)

𝑦𝛾𝑢𝑚𝑠0𝑠1 (𝑢
𝑚
𝑠15)

𝑦𝛾 , (11)

𝑘𝑚𝑛,𝜇 (𝑥𝛾) =(𝑢𝑚𝑠7𝑠2)
𝑦𝛾 (𝑢𝑚𝑠2𝑠7𝑢

𝑚
𝑠7𝑠4𝑢

𝑚
𝑠4𝑠6

𝑢𝑚𝑠6𝑠2)
𝑦𝛾𝑢𝑚𝑠2𝑠6

(𝑢𝑚6𝑠4
)𝑦𝛾 , (12)

𝑙𝑚𝑛,𝜇 (𝑥𝛽 , 𝑥𝛾) =
[
𝑓 𝑚𝑛,𝜇 (𝑥𝛾)−1] 𝑦𝛽 [

𝑓 𝑚𝑛,𝜇 (𝑥𝛾)𝑘𝑚𝑛,𝜇 (𝑥𝛾)𝑔𝑚𝑛,𝜇 (𝑥𝛾)−1ℎ𝑚𝑛,𝜇 (𝑥𝛾)−1] 𝑦𝛽
· ℎ𝑚𝑛,𝜇 (𝑥𝛾)

[
𝑔𝑚𝑛,𝜇 (𝑥𝛾)

] 𝑦𝛽 , (13)
𝑆𝑚𝑛,𝜇 (𝑥𝛼, 𝑥𝛽 , 𝑥𝛾) =(𝑢𝑚𝑠0𝑠3)

𝑦𝛾
[
𝑓 𝑚𝑛,𝜇 (𝑥𝛾)

] 𝑦𝛽 [
𝑙𝑚𝑛,𝜇 (𝑥𝛽 , 𝑥𝛾)

] 𝑦𝛼 . (14)

Now, we defer to Sect. 3 in Ref. [8] to look at the detail of the meaning and definition of these
functions like 𝑢𝑚𝑠0𝑠3 . We refer briefly to the meaning of the interpolation function 𝑆𝑚𝑛,𝜇 (𝑥). This
function connects the site 𝑚 to 𝑥, and then, Eq. (8) means the connection as 𝑥 → 𝑛 − �̂� → 𝑛 → 𝑥.
That is, 𝑣𝑛,𝜇 (𝑥) means the transition function on 𝑥.
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By using this interpolated transition function, we can check that the cocycle condition for 𝑣𝑛,𝜇 (𝑥)
holds in the same way as the original cocycle condition of the corner 𝑛. As a result, Lüscher [8]
proved the cocycle condition at any 𝑥,

𝑣𝑛−�̂�,𝜇 (𝑥)𝑣𝑛,𝜈 (𝑥)𝑣𝑛,𝜇 (𝑥)−1𝑣𝑛−�̂�,𝜈 (𝑥)−1 = 1l. (15)

3. Fractional topological charge on the lattice

In the previous section, we have reviewed the construction of the integral topological charge
on the lattice. From now on, in order to calculate the fractional topological charge on the lattice, we
extend the above definition of the transition function 𝑣𝑛,𝜇 (𝑥) to �̃�𝑛,𝜇 (𝑥) which behaves covariantly
under the Z𝑁 1-form gauge transformation.4

3.1 Covariant transition function and calculation of the topological charge

The fractionality of the topological charge arises from the Z𝑁 1-form invariant action (2) and
the gauging procedure as5

𝑆W [𝑈ℓ , 𝐵𝑝] =
∑
𝑝

𝛽
[
tr
(
1l − 𝑒−

2𝜋𝑖
𝑁 𝐵𝑝𝑈𝑝

)
+ c.c.

]
,

∑
𝑝∈𝜕 𝑓

𝐵𝑝 = 0 mod 𝑁, (17)

where we have defined the background 2-form gauge field 𝐵𝑝 = 𝐵𝜇𝜈 (𝑛) at the face of a plaquette.
From Eq. (17), the Z𝑁 1-form gauge invariance demands that each plaquette variable 𝑈𝑝 should
be multiplied by 𝑒−

2𝜋𝑖
𝑁 𝐵𝑝 . Then, we reconstruct all components in the definition of the transition

function 𝑣𝑛,𝜇 (𝑥) in the following: At first, we define the admissibility condition (7) once more1l − 𝑒−
2𝜋𝑖
𝑁 𝐵𝑝𝑈𝑝

 < 𝜀, (18)

where one finds that 𝜀 ≲ 0.074 is sufficiently small. Next, we redefine the interpolation function 𝑆𝑚𝑛,𝜇
as 𝑆𝑚𝑛,𝜇 (𝑥) in terms of �̃�𝑚𝑠𝑠′ constructed by multiplication of appropriate Z𝑁 plaquette fields 𝑒− 2𝜋𝑖

𝑁 𝐵𝑝 ;
the illustration of this redefinition of the components in 𝑆𝑚𝑛,𝜇 (𝑥) is depicted in Fig. 2. Finally, we
see the gauge covariance of �̃�𝑛,𝜇 (𝑥), that is, �̃�𝑛,𝜇 (𝑥) ↦→ 𝑒

2𝜋𝑖
𝑁 𝜆𝜇 (𝑛−�̂�) �̃�𝑛,𝜇 (𝑥).

By using this gauge-covariant transition function �̃�𝑛,𝜇 (𝑥), we can check the cocycle condition,

�̃�𝑛−�̂�,𝜇 (𝑥)�̃�𝑛,𝜈 (𝑥)�̃�𝑛,𝜇 (𝑥)−1�̃�𝑛−�̂�,𝜈 (𝑥)−1 = 𝑒
2𝜋𝑖
𝑁 𝐵𝜇𝜈 (𝑛−�̂�−�̂�)1l. (19)

This implies that under our construction of the transition function the principal bundle can possess
a rich structure by an amount of Z𝑁 in the right hand side, where the topological charge is shifted

4In what follows, variables with a tilde are subject to the 1-form gauge covariance, which differ from Lüscher’s
construction.

5The Z𝑁 1-form gauge transformation is as follows:

𝑈ℓ ↦→ 𝑒
2𝜋𝑖
𝑁 𝜆ℓ𝑈ℓ ,

𝐵𝑝 ↦→ 𝐵𝑝 + (d𝜆)𝑝 mod 𝑁, (16)

where 𝜆ℓ ∈ Z𝑁 and (d𝜆)𝑝 =
∑
ℓ∈𝜕𝑝 𝜆ℓ . Under this transformation, the action (17) is invariant.

5
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𝑤𝑛−3̂(𝑠2)−1𝑤𝑛−3̂(𝑠7)

𝐵24(𝑛)

𝐵34(𝑛 − 3̂)

𝑈 (𝑠7,−4)

𝑛 − 3̂

𝑠0 = 𝑛 𝑠1

𝑠6𝑠2

𝑠5

𝑠4
𝑠7

𝑠3

𝑥1

𝑥2
𝑥4

Construction of 𝑢𝑛−3̂
𝑠7𝑠2 Construction of �̃�𝑛−3̂

𝑠7𝑠2

Figure 2: Illustration for constructing the new components of the interpolation function. Here, we give an
example of 𝑢𝑛−3̂

𝑠7𝑠2 . (Left) The original construction of 𝑢𝑛−3̂
𝑠7𝑠2 . The red line means 𝑤𝑛−3̂ (𝑠7), and the blue line

means the inverse of 𝑤𝑛−3̂ (𝑠2). These functions are related to the interpolate function 𝑆𝑚𝑛,𝜇 (𝑥). (Right) The
new construction of �̃�𝑛−3̂

𝑠7𝑠2 . We attach the 2-form background gauge fields for corresponding plaquettes, for
instance, 𝐵24 (𝑛) and 𝐵34 (𝑛 − 3̂), due to the Z𝑁 1-form invariance.

by a fractional value in the unit of 1/𝑁 . Then, substituting �̃�𝑛,𝜇 (𝑥) instead of 𝑣𝑛,𝜇 (𝑥) into Eq. (6),
we find that the result is written in a local way by using the cohomological operations as

𝑄top = − 1
𝑁

∫
𝑇 4

1
2
𝑃2(𝐵𝑝) mod 1 ∈ 1

𝑁
Z, (20)

where the Pontryagin square 𝑃2 is defined in terms of (higher-)cup products by

𝑃2(𝐵𝑝) = 𝐵𝑝 ∪ 𝐵𝑝 + 𝐵𝑝 ∪1 d𝐵𝑝 . (21)

3.2 ’t Hooft anomaly

Using the above construction of the fractional topological charge on the lattice, let us consider
the ’t Hooft anomaly in the lattice gauge theory. First, the definition of the partition function is
given by

𝑍𝜃 [𝐵𝑝] =
∫
A𝜀 [𝐵𝑝 ]

d𝑈ℓ exp
(
−𝑆W [𝑈ℓ , 𝐵𝑝] + 𝑖𝜃𝑄top [𝑈ℓ , 𝐵𝑝]

)
, (22)

where we denote the set of admissible gauge fields as

A𝜀 [𝐵𝑝] =
{
{𝑈ℓ}

��� 1l − 𝑒−
2𝜋𝑖
𝑁 𝐵𝑝𝑈𝑝

 < 𝜀 for all 𝑝
}
. (23)

Note that A𝜀 [𝐵𝑝] is 𝑆𝑈 (𝑁) gauge invariant and Z𝑁 1-form gauge covariant.
Then, substituting the expression of 𝑄top (20) into the partition function (22) and carrying out

the shift 𝜃 → 𝜃 + 2𝜋, we obtain

𝑍𝜃+2𝜋 [𝐵𝑝] = exp
[
−2𝜋𝑖

𝑁

∫
𝑇 4

1
2
𝑃2(𝐵𝑝)

]
𝑍𝜃 [𝐵𝑝] . (24)
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This violation of 2𝜋 periodicity of 𝜃 reproduces the result of the ’t Hooft anomaly in the continuum
theory between the shift symmetry of 𝜃 → 𝜃 + 2𝜋 and the Z𝑁 1-form symmetry for 4d 𝑆𝑈 (𝑁) pure
Yang–Mills theory [3].

4. Conclusion and future works

We construct the fractional topological charge in the lattice 𝑆𝑈 (𝑁) gauge theory coupled with
the background Z𝑁 2-form gauge fields 𝐵𝑝 by extending Lüscher’s construction. Then, using this
fractional topological charge on the lattice, we calculate the partition function of the lattice 𝑆𝑈 (𝑁)
gauge theory with 𝐵𝑝 and conclude that this theory has the mixed ’t Hooft anomaly between the
shift symmetry of 𝜃 → 𝜃 + 2𝜋 and the Z𝑁 1-form symmetry. This result implies that the lattice
gauge theory rigorously provides for the result of the mixed ’t Hooft anomaly between the Z𝑁
1-form symmetry and the 𝜃 periodicity as a completely regularized theory.

In this talk, we only focus on 𝑝-form symmetries, but there are many studies of non-invertible
symmetries which is the other aspects of generalized symmetries. For traditional symmetries, the
symmetry generator possesses the inverse. As a generalization, we consider that the symmetry
generator does not possess the inverse and we call it non-invertible symmetry. The non-invertible
symmetry has the ’t Hooft anomaly as well as 𝑝-form symmetries [9, 10]. Then, our construction
of the fractional topological charge would be useful to construct non-invertible symmetries on the
lattice theory.
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