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1. Introduction

The nucleon electric dipole moment (nEDM) is an important indicator of CP(T)-symmetry
violation. The nEDM prediction from the Standard Model’s CKM matrix for the neutron is ≈ 10−31

[e cm], which is much smaller than the upper-limit determined through experiments on neutrons
(ILL) [1] and 199Hg [2]. The SM prediction is also too small to explain the matter-antimatter
asymmetry compared to what is required by the Sakharov conditions. Hence, the measurement of
the nEDM is important in the search for physics beyond Standard Model.

Strong interactions may be a source of CP violation known as the QCD "θ-term", Sθ = θQ,
where Q is the topological charge. Its contributions to the nEDM can be studied systematically
from first principles only using lattice QCD. Many efforts have been made to calculate the nEDM
using Lattice QCD [3–13]. In earlier calculations, an incorrect definition of the electric dipole form
factor F3 resulted in significant mixing with the Pauli form factor [9]. After subtracting the mixing
term, those nEDM results became much smaller, comparable with phenomenology, and universally
dominated by statistical noise even with unphysical heavy quark masses.

Currently, most of nEDM calculations on a lattice use the traditional form factor method in
which nEDMs are extracted as electric dipole form factors (EDFF) F3(Q2) from CP-odd corrections
to matrix elements of the quark vector current due to topological charge. This form factor has to be
extrapolated to the forward limit (Q2 → 0) to obtain the nEDM. The other method is to calculate
the EDM from the nucleon energy shift ∆E ∝ dN (2®S · ®E) in a uniform background electric field
[9, 14, 15]. This method has significant advantages: no forward limit is required, there is no parity
mixing between F2 and F3, and one only needs to calculate the CP-odd part of the two- instead of
three-point function.

We present our θ-nEDM results using the background field method. Details of this method
were first described in Ref. [16]. The background field method is described in Sec. 2, the results
are presented in Sec. 3, and discussed in Sec 4.

2. Electric dipole moment from background field method

In this section, we discuss and compare methods to compute the nEDM on a lattice. The form
factor method has been described in multiple publications (see, e.g., Ref.[9] and references therein).
The EDFF is defined as

〈p′,σ′ |Jµ |p,σ〉��CP = ūp′,σ′
[
F1(Q2)γµ +

(
F2(Q2) + iF3(Q2)γ5

) iσµνqν
2MN

]
up,σ (1)

where Q2 = −(p′− p)2, and F1,2,3 are the Dirac, Pauli, and electric dipole form factors. The forward
limit of the latter yields the nEDM, F3(0) = 2mndn. Although the nucleon states in QCD vacuum
with CP-violation are no longer parity eigenstates, it is crucial to ensure that their spinors satisfy
the positive-parity Dirac equation with real-valued mass, ( /p − mN )up,σ = 0, otherwise F3 receives
a spurious contribution from F2 [9],

F̃3(Q2) = F3 cos(2α) − F2 sin(2α), (2)

where α is the parity mixing of the lattice nucleon spinor due to CP-violation that can be extracted
from the two-point function.
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Another approach to calculate the nucleon EDM is the background field method introduced in
[14–17]. It has also been extended to analyze CP-even properties, such as the electric polarizability
and magnetic moments of the nucleon [18, 19]. Since the proton accelerates in an electric field,
and requires a more sophisticated analysis, we study only the neutron EDM in this work. After
including the background field, the Dirac equation for the parity-positive neutron spinor uN in the
rest frame (pN = (mN , ®0)) becomes in Euclidean space [9][

i/p + mN −
(1
2

Fµνσ
µν ) κ + iζγ5

2mN

]
uN =

©« mN − (κ+iζ ) ®E · ®σ
2mN

−EN

−EN mN +
(κ−iζ ) ®E · ®σ

2mN

ª®¬ uN = 0 , (3)

where EN is the neutron energy, κ, ζ = F2,3(0) are magnetic and electric dipole moments, and ®E is
the Euclidean electric field. To the order linear in κ, ζ , the nucleon energy EN is

E2
N = m2

N − iζ(®Σ · ®E) +O(κ2, ζ2) , or EN = mN − iζ
2mN

(®Σ · ®E) +O(κ2, ζ2) (4)

where ζ/(2mN ) = dN is the electric dipole moment and ®Σ = diag[®σ, ®σ] is the spin operator. Note
that the linear part of the energy shift δE = − iζ

2mN
(®Σ · ®E) is imaginary because of the analytic

continuation in electric field on a Euclidean lattice, implying that the correlation function acquires
a complex phase. Expanding the path integral in θ � 1, one obtains the CP-violating correction to
the nucleon correlation function in the background field E on one hand, and the t-linear correction
on the other:

C2pt ,E,θ ≈ 〈N(t)N̄(0)〉E − iθ〈Q N(t)N̄(0)〉E ∝ e−Et
[
1 − tδE +O(θ2)

]
. (5)

The nEDM ζ = F3(0) can be extracted from nucleon correlators in an electric field ®E = Ez ẑ as

ζ

θ
= i

2mN

Ez

δE
θ
= −2mN

Ez

d
dt

Tr
[
T+Sz 〈Q N(t)N̄(0)〉Ez

]
Tr
[
T+〈N(t)N̄(0)〉Ez

] , (6)

where T+ = 1
2 (1+ γ4) is the positive-parity projector, and T+Sz = T+ · (1+Σz) is the spin-ẑ projector.

So far, we have ignored excited states and negative parity state. In practice, a multi-state model
can be fitted to the time dependence of the EDM estimator (6). On the other hand, the formula (6)
resembles the “summation” method of computing ground-state matrix elements. This relation is
made apparent by the Feynman-Hellman theorem (recently discussed in Ref. [20] in the context
of lattice QCD), so the EDM can alternatively be calculated from the matrix element of the local
density of topological charge,

ζ

θ
= −2mN

Ez
〈N↑ |q |N↑〉Ez ≈ −2mN

Ez

Tr
[
T+Sz 〈N(t f ) q(τ) N̄(0)〉Ez

]
Tr
[
T+〈N(t f ) N̄(0)〉Ez

] . (7)

Thus, the problem is reduced from computing a 4-point function between the nucleon fields N, N̄ ,
the global topological charge Q =

∫
d4xq(x), and the vector current Jµ = ψ̄γµψ to a correlator of

N, N̄ and the local topological charge density q(x) in uniform field:

C3(t f , τ) = Tr
[
T+Sz 〈N(t f ) q(τ) N̄(0)〉Ez

]
=

[
T+Sz

]
βα

∑
®y,®z

〈Nα(t f , ®y) q(τ, ®z) N̄β(0)〉 . (8)
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This point is crucial to reducing fluctuations in correlators with any operator that leads to “discon-
nected” Wick contractions: topological charge, Weinberg 3-gluon interaction, isoscalar 2-quark
and 4-quark interactions, and so on. In this paper we concentrate on the topological charge but the
methodology can be readily extended to these other��CP interactions.

Chiral symmetry is important for calculations involving topological charge. We use gauge
configurations generated with Nf = 2 + 1 flavors of domain wall fermions (DWF) [21]. (Tab. 1).

Table 1: Gauge ensembles used in this work [21].

size ml/ms mπ MeV Nc f g

I24_m010 243 × 64 0.01/0.04 432 1100
I24_m005 243 × 64 0.005/0.04 340 1400

Periodicity on a lattice in space and time requires quantization of abelian field flux QqEkLkL4 =

2πn, where Qu =
2
3 and Qd = −1

3 are quark charges. A uniform electric field on the lattice is
introduced by multiplying the gauge links by the U(1) phase [18],

Ax,4 = nk4Φk4xk, Ax,k |xk=Lk−1 = −nk4Φk4Lk x4, (9)

where nµν is the number of quanta and Φµν =
6π

LµLν
is the unit of flux through plaquette (µν). Such

potentials result in a uniform electric field ®E = (n14Φ14,n24Φ24,n34Φ34).

3. Numerical results

To calculate nucleon correlators, we use all-mode-averaging (AMA) [22] by combining high-
precision and truncated-CG samples computed with low-mode deflation of the preconditioned Dirac
operator. We also employ low-mode averaging whereby we approximate the full-volume average
of nucleon correlators from low modes and combine it with AMA samples to correct bias, which
have resulted in a 50% reduction of statistical errors:

〈O〉 ≈ 〈OLMA〉V4 + 〈Oapprox − OLMA〉Napprox + 〈Oexact − Oapprox〉Nexact . (10)

In addition, we average over spin orientations 2Sz = ±1 and electric fields Ez = ±1,±2.
To use the Feynman-Hellman method, we need to determine the local topological charge

density q(x). We calculate q(x) using 5-loop improved discretization [23] and gradient flow [24].
Gradient flow helps suppress O(a) size dislocations that contribute to fluctuation of the global
topological charge. At large enough gradient flow time, the global topological charge Q becomes
constant. However, the local density (summed over the spatial volume) entering the correlator in
Eq. (7), becomes delocalized (“diffused”) in the Euclidean time, which complicates analysis of its
ground-state matrix elements. This effect is visible in the plateaus for dn/θ (7) shown in Fig. 1 for
source-sink separations t = (6 . . . 10)a: as the gradient flow time tgf is increased, the τ-dependent
features in the ratios (7) become more diffused. In particular, it becomes hard to isolate the ground-
state plateau from the contact term contributions where the density q(x) overlaps with the nucleon
operators.
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Figure 1: Plateaus of neutron matrix elements of topological charge density converted to EDM (7), depending
on the gradient flow time. The vertical dashed lines of respective colors show the locations of the nucleon
fields, which lead to contact terms with the gluon operator on the same time slices. As the gradient flow time
increases, the contact terms “diffuse” into the EDM plateaus.
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Figure 2: (Left) correlation of the topological charge density 〈q(r)q(0)〉 computed with tgf and (right)
diffusion kernel K(tgf

2 − tgf
1 ; τ) (12).

We model this Euclidean-time diffusion effect of the gradient flow by

q(tgf
2 ; τ) =

∫
dt ′K(tgf

2 − tgf
1 ; |τ − τ′ |) q(tgf

1 ; τ′) (11)

where K(tgf
2 − tgf

1 ; |τ − τ′ |) is the diffusion kernel that can be extracted from Fourier-transformed
correlations of the topological charge

K(tgf
2 − tgf

1 ; τ) = 1
Lt

∑
k

eiωkτ

√√√
χ̃(tgf

2 ;ωk)
χ̃(tgf

1 ;ωk)
, χ̃(tgf;ωk) =

∑
τ

e−iωkτ 〈q(tgf; τ)q(tgf; 0)〉 , (12)

where the frequency ωk =
2π
Lt

k. Numerical results for kernel K(tgf
2 − tgf

1 ; |τ |) are shown in Fig. 2,
illustrating how the diffusion profile widens with increasing gradient flow time tgf. Similarly, the
effect of “diffusion” on the three-point correlation function (8) can be written as

C̃3(tgf; t f , τ) =
∑
τ′

K(tgf; |τ − τ′ |)C3(t f , τ′) , (13)
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where C3(t f , τ) is the correlation function that would be computed with a strictly local definition
of the topological charge q(τ). Unfortunately, this diffusion mixes the neutron EDM signal with
contributions from unwanted regions τ ≤ 0 and τ ≥ t f , which we model as

C3pt (τ, t f ) =


a0e−E0t f
(
dn + c1e−∆E1 τ + c1e−∆E1 (t f −τ) + c2e−∆E1 t f

)
, 0 < τ < t f ,

Cexte−E0t f eEextτ , τ ≤ 0 ,
Cexte−E0t f e−Eext (τ−t f ) , t f ≤ τ .

(14)

The first line corresponds to the matrix element where the gluon operator is located between the
source and sink. The second and the third lines represent the contributions from contact terms
(τ = 0 or τ = t f ) and “crossed” regions with q(τ) located outside of the source-sink time interval.
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Figure 3: Fits of combined Euclidean-time (14) and gradient flow-time dependence (13) of lattice nEDM
correlation functions. The band is the fit result using Eq. (14).

We perform a fit of three-point (8) data to ansatz (14) joint with a two-state fit of two-point
neutron data to constrain ground- and excited-state energies E0, E0+∆E1. For the former, we select
data with with longer range 8a ≤ t f ≤ 10a and 5a2 ≤ tgf ≤ 8a2. The fit result for the ground-state
EDM dn/θ is shown in Fig. (3). We obtain the following values at the two pion masses

[dn/θ]340 MeV = −0.0072(20)stat ,

[dn/θ]432 MeV = −0.0060(20)stat .

Using chiral prediction dn(m2
π) ∼ c1m2

π + c2m2
π log(m2

π), we can obtain only a tentative es-
timate of the value at the physical point (dn/θ)phys

lin.+log. = −0.0036(21)stat. The uncertainty of the
extrapolation is substantially constrained by chiral symmetry in our EDM calculation.

4. Summary

In this work, we have calculated the neutron EDM employing the background field method on
two gauge ensembles with chirally symmetric quarks and pion masses ≈ 340 and 420 MeV. Unlike
in the traditional form-factor approach, we calculate the forward matrix element of the topological
charge density in a simultaneously spin- and electrically-polarized nucleon state. This method is
instrumental to limit the growth of the stochastic noise from the global topological charge as the
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physical volume of a lattice increases. Without the need to extrapolate in the momentum transfer
Q2 → 0, the systematic uncertainty can be further dramatically reduced.

The main obstacle in using this method is the difficulty of determining topological charge
density. In this work, we have used the field-theoretical definition from the gluon fields combined
with gradient flow. However, gradient flow leads to “diffusion” in Euclidean time and mixing of the
nEDM signal with contact terms and contributions from nn̄-pair states. We have implemented the
numerical procedure to extract the diffusion kernel from lattice data and incorporate it in the fits
of correlators of the nucleon and the topological charge density. With only two pion mass points
available, we could perform only a tentative estimate of the physical-point value. Another point at
lighter pion mass mπ ≈ 250 MeV is currently being investigated.

We plan to explore the fermionic definition [11, 25], which may be especially advantageous
when combined with the low-mode approximation for neutron correlation function. Further, this
method can be easily applied to other��CP operators, and might be especially beneficial for the nEDM
induced by Weinberg’s three-gluon operator and 4-quark��CP operators.
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