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We determine the scales 𝑟0, 𝑟1, the ratio 𝑟0/𝑟1 for 𝑁 𝑓 = 2 + 1 flavor QCD ensembles generated
by CLS. These scales are determined from an improved definition of the static force, which we
measure using Wilson loops and furthermore use to study the shape of the potential. Our analysis
involves various continuum and chiral extrapolations of data that covers pion masses between 134
MeV and 420 MeV and five lattice spacings down to 0.038 fm.
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The determination of 𝑟0 and 𝑟1 in 𝑁 𝑓 = 2 + 1 QCD Tom Matty Bo Asmussen

1. Introduction

The static potential V(r) plays an important role in lattice QCD and can be computed via Wilson
loops. In this work, we use it to determine the scales 𝑟0 and 𝑟1 which offer a vital link between lattice
simulations and physical observables. The calculation has been done using ensambles generated
by state-of-the-art simulations of 𝑁 𝑓 = 2 + 1 flavor QCD by the CLS Consortium [1, 2]. We are
using HYP-smeared fields to suppress the overlap with excited states, giving a better signal-to-noise
ratio. The reduction of systematic errors plays a key role in this analysis as several methods have
been used to reduce them to a minimum to give an updated value for the physical value of 𝑟0. We
will briefly go through how to find the scales from Wilson loops measured on the ensembles. The
potential is calculated from those using a GEVP.

2. Finding the scales through a GEVP

To extract the ground state potential the first step in our method is to solve the generalised
eigenvalue problem (GEVP) [3] on 𝑟/𝑎 ×𝑇/𝑎 on-axis Wilson loops that are measured on the gauge
configurations where a correlation matrix is build from different smearing levels [4].

𝐶 (𝑡) 𝜓𝛼 = 𝜆𝛼 (𝑡, 𝑡𝐺) 𝐶 (𝑡𝐺) 𝜓𝛼, (1)

where 𝛼 = 0 corresponds to the ground state and higher values to excited states of the resulting
eigenvalues 𝜆𝛼. The size of C(t) depends on the amount of smearing levels used. The effective
masses are then found by

𝐸0(𝑡 +
𝑎

2
, 𝑡𝐺) ≡ ln(𝜆0(𝑡, 𝑡𝐺)/𝜆0(𝑡 + 𝑎, 𝑡𝐺)). (2)

Performing a weighted average in the plateau region of the effective masses 𝐸0(𝑡 + 𝑎
2 , 𝑡𝐺) as seen in

the left plot of figure1 the ground state potential𝑉 (𝑟) for a given r can be calculated. As the excited
state contamination is high at early times the start point of the plateau must be chosen with care. To
do that, different methods were analysed. The method used in this proceeding was to create a new
function that has the starting point of the weighted average as a parameter and to analyse the values
and errors given by this function. Furthermore, a fit on the data of the effective mass is performed
as a check. The ground state potential can then be used to determine the static force 𝐹 (𝑟) using the
following improved definition

𝐹 (𝑟𝐼 ) = [𝑉 (𝑟) −𝑉 (𝑟 − 𝑎)]/𝑎. (3)

The improved distance 𝑟𝐼 [5] is such that the force evaluated at tree level in pertubation theory is
𝐹tree(𝑟𝐼 ) = 4

3
𝑔2

0
4𝜋𝑟2

𝐼

. It is 𝑟𝐼 = 𝑟 − 𝑎/2 + O(𝑎2) and suppresses lattice artefacts [6]. Given the force,
we can now find the following scales:

𝑟2
𝐼𝐹 (𝑟𝐼 ) |𝑟𝐼=𝑟0 = 1.65[5]
𝑟2
𝐼𝐹 (𝑟𝐼 ) |𝑟𝐼=𝑟1 = 1[7] (4)

which will be done by 3 point interpolations using the 3 closest data points. In general, a data point
before and two after the scales in Eq. (4) are used for the interpolation. Different amount and ranges
have been used as a check. Finally, this gives us the values for 𝑟0 and 𝑟1 for all ensembles. In the
right plot of figure 1 the results of the scales on one ensemble is shown.
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Figure 1: On the left the effective masses for ensemble J501 at r/a = 13 with 𝑡0/a = 5 together with the
resulting ground state potential calculated from the plateau using a weighted average. On the right the
resulting static force together with the 𝑟1 and 𝑟0 interpolation.

3. Ensembles

The Gauge configurations used for the determination of 𝑟0 are generated by CLS (Coordinated
Lattice Simulations) using 𝑁 𝑓 = 2 + 1 flavors of nonperturbatively improved Wilson fermions with
the Lüscher-Weisz gauge action. For most ensembles open boundary conditions in time have been
used to address the problem of topological freezing at small lattice spacings and for an improved
stability of the simulations a twisted-mass reweighting came into use [8]. In the analysis we used 20

Figure 2: Sketch of the different ensembles with their pion mass versus the lattice spacing. The size of the
circles is in relation to the number of configurations spanning 500-3500.
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ensembles, which can be seen in figure 2 spanning a lattice spacing from 0.085fm to 0.037fm and a
pion mass from 430MeV to 134MeV. The statistical error in this work is calculated by the Γ-method
[9] where the slow modes in the autocorrelation are explicitly added, as described in [10].

4. Results

The resulting 𝑟0 values are depicted on the left in figure 3. A global fit of the form
𝑟0
𝑎

= 𝑐1 |𝛽 + 𝑐2(𝑟0𝑚𝜋)2 (5)

is performed to the data, which shows a minimal mass-dependence of 𝑟0. To find the physical value
of 𝑟0 we extrapolate the data into the continuum and (inter1)extrapolate to the physical mass of 𝑚𝜋
with help of the physical scale

√
𝑡0 = 0.1443(7)fm [11] using the global fit:

𝑟0√
𝑡0

= 𝑐1 + 𝑐2

(
𝑎

𝑟0,sym

)2
+ 𝑐3(𝑟0𝑚𝜋)2. (6)

𝑟0,sym is calculated at the symmetric point where the quark masses are degenerate. The grey band in
figure 3 depicts the mass dependence in the continuum limit. As a small check of the fit-parameters,
we used the fit parameters from the global fit from Eq. (6) and compared the results of the ensembles
with with symmetric masses by evaluating the fit at the symmetric point, which can be seen on
the left in figure 4, where the fit aligns with the symmetric points. In total, 4 different fits were
used where Eq. (6) is labeled as Fit 1. Fit 2 has an added mass term to add a mass dependence on
the lattice artifact. Fit 3 is constructed in a way to change 𝑐3 to be independent of 𝑟0, but instead
indirectly by 𝑡0 using 𝜙2 = 8𝑡0𝑚2

𝜋 and 𝜙4 = 8𝑡0
(
𝑚2
𝐾
+ 1

2𝑚
2
𝜋

)
which are used to shift the masses,

1One ensemble is generated at the physical pion mass

Figure 3: Values of 𝑟0/𝑎 for all ensembles in respect to 𝑟2
0𝑚

2
𝜋 on the left. On the right 𝑟0/

√
𝑡0 of the different

ensembles with a global fit. The grey band corresponds to the continuum extrapolation.
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0.45 0.46 0.47 0.48 0.49

Figure 4: On the left the continuum extrapolation of 𝑟0√
𝑡0

on the ensembles at the symmetric point. On the
right the results of 𝑟0 at the physical point of the different fits listed in table 1 as a plot.

Method 𝑟0 [fm] 𝜒2 /d.o.f. 𝑟0 [fm] 𝜒2 /d.o.f.
F1: 𝑐1 + 𝑐2( 𝑎

𝑟0,𝑠𝑦𝑚
)2 + 𝑐3(𝑟0𝑚𝜋)2 F3: 𝑐1 + 𝑐2( 𝑎

𝑟0,𝑠𝑦𝑚
)2 + 𝑐3𝜙2 + 𝑐4(1.098 − 𝜙4)

all 0.4715(57) 19.5/17 0.4738(63) 17.1/16
𝑚𝜋 <400 0.4717(57) 18.3/11 0.4736(64) 16.8/10
𝛽 ≠3.4 0.4671(64) 14.2/12 0.4665(71) 9.1/11

F2: 𝑐1 + 𝑐2( 𝑎
𝑟0,𝑠𝑦𝑚

)2 + 𝑐3(𝑟0𝑚𝜋)2 + 𝑐4(𝑚𝜋𝑎)2 F4: 𝑐1 + 𝑐2( 𝑎
𝑟0,𝑠𝑦𝑚

) + 𝑐3(𝑡0𝑚2
𝜋)

all 0.4749(76) 11.8/16 0.4764(67) 17.4/16
𝑚𝜋 <400 0.4775(98) 9.1/10 0.4770(75) 15.6/10
𝛽 ≠3.4 0.4712(88) 9.8/11 0.4722(72) 12.4/11

Table 1: A table of the different fit parameters that have been tested together with their 𝜒2 /d.o.f. and results
of the physical 𝑟0.

since the simulation conditions of the ensembles to have a constant sum of the bare quark masses
might not correspond to constant 𝜙4 = 1.098[11] due to for instance discretization effects. The Fit
4 is done by having the parameters only depend on 𝑡0 in contrast to 𝑟0. All the fits have also been
performed using cuts with respect to high un-physical pion masses and the coarsest lattices which
are on table 1 with the resulting physical values of 𝑟0 and 𝜒2/𝑑.𝑜. 𝑓 .. On the right of figure 4 the
results of the fits are visualized. The results of the different fits agree with each other, with the
largest change obtained by excluding the coarsest lattices, which can be due to the loss of a large
portion of data points. Fit 3 shows that there is not a large discrepancy by neglecting a mass shift
using the mass derivatives of 𝜙4[12]. We will use the results of Fit 1 for our final result which
together with the results from different groups published in the FLAG Review 2021[13] is shown
in figure 7.
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Figure 5: On the Left 𝑟1/
√
𝑡0 of the different ensembles with a global fit. The grey band corresponds to

the continuum extrapolation. On the right 𝑟0/𝑟1 of the different ensembles with a linear fit given as the grey
band.

4.1 𝑟1 and 𝑟0/𝑟1

A similar analysis as for 𝑟0 has been done for the scale 𝑟1 where the data points with the
continuum extrapolation using a global fit are on the left of figure 5. What can be seen here is that
several ensembles of the finer lattice spacings are more than one sigma away from the results of
the global fit for their corresponding lattice spacing. In general the determination of 𝑟1 has been
troublesome in some cases for the finer lattice spacings (see for example the green points in the left
plot of figure 5). On the right plot of the same figure 5 the ratio 𝑟0/𝑟1 is shown together with the
result of a linear fit as the gray band, giving a nearly constant result. Some outliers, in particular the
value corresponding to 𝛽 = 3.7 with the pion mass closest to the physical value, will be analyzed
further. The physical values of the result 𝑟1 and the ratio 𝑟0/𝑟1 compared to the other results of the
FLAG Review 2021[13] are shown in figure 7.

4.2 Shape of the potential

We studied the shape of the potential by building 𝑐(𝑟) = 1
2𝑟

3𝐹′(𝑟) computed as:

𝑐(𝑟) = 1
2
𝑟3 [𝑉 (𝑟 + 𝑎) +𝑉 (𝑟 − 𝑎) − 2𝑉 (𝑟)]/𝑎2 (7)

If the potential would be a pure Cornell potential 𝑉 = 𝜎𝑟 − 𝐾
𝑟

then 𝑐 = −𝐾 . The result of the
quantity 𝑐(𝑟) for one of the fine ensembles is presented in figure 6. 𝑟 in this case is an improved
distance analogous to 𝑟𝐼 defined in [14]. For short distances, 𝑐(𝑟) behaves as prescribed by the
perturbation theory, which for comparison is plotted for 𝑁 𝑓 = 3 using a 4-loop beta function for
the c-scheme which can be found in [15]. For comparison the Richardson potential[16] is plotted
as well, which the data follows quite closely. One can see that the data gets quite noisy around and
after 𝑟 = 𝑟0. It will be analyzed further together with other ensembles.

6



P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
2
9
6

The determination of 𝑟0 and 𝑟1 in 𝑁 𝑓 = 2 + 1 QCD Tom Matty Bo Asmussen

Cornell

0 0.2 0.4 0.6 0.8 1 1.2
-1

-0.9

-0.8

-0.7

-0.6

-0.5

-0.4

-0.3

-0.2

-0.1

0

Figure 6: The physical quantity 𝑐(𝑟) from Eq. (7) for the finest lattice spacing with the smallest available
pion mass compared with the pertubation theory at short distances. For comparison we plot the curve for the
Richardson potential[16] and the Cornell value 𝑐 = −0.52 [17].

5. Conclusion

In this work, we have presented a new detailed analysis to find the values of 𝑟0 and 𝑟1. A
comparison to other groups from the Flag report of 2021[13] is presented in figure 7. Several
methods have been used to control systematic error, which will be discussed extensively in detail in
an upcoming article. We conclude that for finer lattices, 𝑟0 can be extracted more reliably than 𝑟1.

This work

HotQCD 14

HotQCD 11

RBC/UKQCD 10A

PACS-CS 08

HPQCD 05B

Aubin 04

FLAG average

0.45 0.46 0.47 0.48 0.49 0.5 0.51 0.52

This work
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MILC 9
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This work

HotQCD 11

RBC/UKQCD 10A

Aubin 04
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1.4 1.45 1.5 1.55 1.6 1.65

Figure 7: Comparison between other results presented in Flag21[13] and our results (blue points) of 𝑟0(left),
𝑟1(middle), and 𝑟0/𝑟1(right) at the physical point.
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