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We present preliminary results for the Renormalization Group (RG) running of the complete basis
of Δ� = 2 four-fermion operators in QCD with # 5 = 3 dynamical massless flavors. We use
O(a)-improvedWilson fermions in amixed action setup, with chirally rotated Schrödinger functional
(jSF) boundary conditions for the valence quarks and Schrödinger functional (SF) boundary
conditions for the sea quarks. The RG evolution operators are evaluated non-perturbatively via the
matrix step-scaling functions (matrix SSF) while the perturbative running is computed using a new
approach [1, 2] relying on the Poincaré-Dulac theorem.
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1. Four-quark operators for Δ� = 2 transitions

The Δ� = 2 transitions, among flavour physics processes, provide some of the most stringent
constraints on New Physics (NP) that can be searched for in particle accelerators. The existence of
new particles can be indeed tested by looking for their possible effects on low-energy processes. The
most general Δ� = 2 weak effective Hamiltonian can be constructed in terms of a complete set of
parity even (PE) and parity odd (PO) 4-quark operators, viz.

PE : &±: ∈
{
O±[++ +��] , O

±
[++−��] , O

±
[((−%% ] , O

±
[((+%% ] , 2O±[)) ] .

}
,

PO : Q±: ∈
{
O±[+ �+�+ ] , O

±
[+ �−�+ ] , O

±
[%(−(%] , O

±
[%(+(% ] , −2O±[) )̃ ]

}
,

(1)

where we understand O±[Γ1Γ2 ] := 1
2
[ (
k̄1Γ1k2

) (
k̄3Γ2k4

)
±

(
k̄1Γ1k4

) (
k̄3Γ2k2

) ]
.

When considering Wilson-fermions, chiral symmetry is broken by the regularisation, this
results in a complicated mixing of the PE operators under renormalisation, while the PO ones still
renormalise as in chirally preserving regularizations, namely [3]

[Q1]' = Z11Q1,

[
Q2
Q3

]
'

=

[
Z22 Z23
Z32 Z33

] [
Q2
Q3

]
,

[
Q4
Q5

]
'

=

[
Z44 Z45
Z54 Z55

] [
Q4
Q5

]
. (2)

Using the four-quark operators, the renormalised effective Hamiltonian can be expressed as

Heff =
��√

2

∑
8

+ 8� "�8 (`)$8 (`) , (3)

the coefficients �8 (`) are the Wilson coefficients, whose RG running is studied non-perturbatively
in this work.

2. Perturbative running for #f = 3 QCD

In this work we present the procedure followed to evaluate the RG running of the Wilson
coefficients �8 that is encoded in the RG evolution operator Û(`). The usual derivation to obtain
such operators can be found in [4], but it is not well-defined for #f = 3. The problem has been solved
as suggested in [1, 2]: the Poincaré-Dulac theorem guarantees the existence of a basis transformation

Q̄′(`) = S(6)Q̄(`) , S(6) =
(
1 +

∞∑
:=1

H2:6
2:

)
SD (4)

that puts the matrix A(6) :=
$(6)
V(6) =

1
6

( ∞∑
:=0

�2:6
2:

)
in the so-called canonical form, i.e. Acan(6) =

1
6

(
� + 62N2

)
, where � is the diagonal matrix of the eigenvalues, N2 is an upper-diagonal matrix

and H2(:+1) can be obtained recursively from H2, . . . ,H2: , 10, . . . , 1:+1 and $0, . . . , $:+1. For
example, we have

AD
2 + 2H2 − [�,H2] = N2 ,

AD
4 + 4H4 − [�,H4] = N2H2 −H2AD

2 , (5)
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where we called AD
2: ≡ SDA2:(

−1
D . In this operator basis, the RG evolution operator Ûcan(6(`)) is

the solution of a differential equation
d

d6
Û−1
can(6) = Acan(6)Û−1

can(6) (6)

that gives
Ûcan(`) = 6(`)−�6(`)−N . (7)

Going back to the original operator basis, we get Û(`) = S−1
D Ûcan(`)S(`).

3. Non-perturbative running

The non-perturbative part of the operator running is obtained as explained in [5] considering
the matrix step-scaling functions (SSFs)

2(D) := U(`/2, `)
����
6̄2 (`)=D

= lim
0→0

�
(
62

0, 0/!
)����
6̄2 (1/!)=D

(8)

where �
(
62

0, 0/!
)
is the matrix step-scaling function obtained from the renormalisation constants:

�
(
62

0, 0/!
)
= Z

(
62

0, 0/2!
) [
Z

(
62

0, 0/!
)]−1

. (9)

Moreover,O(026̄2) lattice artefacts can be removed by considering subtracted step-scaling functions

�̃(D, 0/!) := �(D, 0/!)
[
1 + D log(2)%: (0/!)$0

]−1
����
D=6̄2 (!)

. (10)

where the X: (0/!)s have been computed in [6]. The continuum extrapolation of �̃(D, 0/!) has
been done simultaneously on data corresponding to the eight couplings D ∈ {1.1100, 1.1844,
1.2656, 1.3627, 1.4808, 1.6173, 1.7943, 2.0120}, with lattice sizes !/0 = 8, 12 (plus !/0 = 16 for
D = 2.0120) using the ansatz[

�̃
(
D=,

0

!

)]
8 9
= [2(D=)]8 9 +

( 0
!

)2 2∑
<=0

[
1<

]
8 9
D<= , (11)

with = = 1, . . . , 8. The fit parameters have been found by minimising the j2 function, and two
examples of fit for a SSF matrix element can be found in figure 1.

Having performed the continuum extrapolations at the different couplings available, the
functional dependence of 2(D) is obtained by fitting the latter with

2(D) = 1 + r1D + r2D
2 + r3D

3 + r4D
4 , (12)

where the coefficients r1 and r2 are fixed by using perturbation theory

r1 = $0 ln 2 , r2 = $1 ln 2 + 10$0 ln2 2 + 1
2
(
$0

)2 ln2 2 . (13)

The NLO anomalous dimension matrix $1 in the jSF scheme has been evaluated in [6], analogously
to what done for the SF scheme in [4]. Two examples for these fits are shown in figure 2.

A series of # squared-couplings D1 . . . DN is then generated through the coupling step-scaling
function [7], i.e. evaluating D= = f−1(D=−1), in order to compute non-perturbatively the quantity

U(`had, `pt) = 2(`1) · · ·2(`# ) , with 2(`) ≡ 2(D(`)). (14)

3
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Figure 1: Continuum extrapolations of the matrix elements
[
�̃(D, 0/!)

]
55,

[
�̃(D, 0/!)

]
23. The extrapolated

continuum values [2(D)]55, [2(D)]23 at every coupling, along with their uncertainties, are depicted as vertical
bands at 0/! = 0.
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Figure 2: Fit of the continumm extrapolations [f]55 and [2]23 as functions of the squared coupling D.

4. Results

Using the factorisation properties of the evolution operators [4], we obtain the RG evolution
operator as function of the scale ` ≤ `pt:

Û(`) = S−1
D D(`pt)

−�/2D(`pt)−N2/2
(
1 + D(`pt)H2 + D2(`pt)H4 + D3(`pt)H6

)
SDU(`pt, `) (15)

where ` is related to SF coupling D through the relation [7]

`

Λ
= (10D)

11
212

0 exp
(

1
210D

)
exp

[∫ √
D

0
dG

(
1
V(G) +

1
10G3 −

11

12
0G

)]
, (16)

and Λ has been computed in [8].
We associate three kinds of uncertainties to the running that we computed:

• statistical error computed propagating the error on 2(D) in Eq. (14);

• systematic error due to the point chosen to match the perturbative running with the non-
perturbative one;
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Figure 3: Non-perturbative running *̂11 (`) (points in red, # = 9) compared to the NLO prediction (curve in
black). The curves in blue are built evolving non-perturbatively the ±(3/3)jSF runnings and quantify the
systematic error.

• systematic error due to the lack of knowledge of the NNLO and NNNLO matrices $2 and $3.

Having no theoretical hint on the entity of $2 and $3, we only try to give a rough estimate of the
systematic error at the last point. First we neglect $3 which only enters in the evaluation of H6. For
what concerns $2 we consider two rough guesstimates: $L

2 = −$1/4, $R
2 = $1/4 , whose rough

choice seems reasonable by requiring the ratio between the elements of $2 and those of $1 to be
of the same order of magnitude of the ratio between the elements of $1 and those of $0. Using
the guesses for $2 we evaluated guesstimates of the matrices HL/R

4 , HL/R
6 and consequently the

guessed perturbative RG evolution ÛL/R(Dpt) that we will address as ±(3/3)jSF. We were then able
to evaluate the complete running defined in (15), where we imposed the matching at the same scale
used for the (2/3)jSF results. Eventually, we defined this kind of systematic error as the difference
between the complete (2/3)jSF running and the guessed ±(3/3)jSF running.

The first two errors in the above list depend on the scale `pt where the matching with perturbation
theory is performed and thus on the number of steps # in Eq. (14). The results for the complete
running are shown in Fig. (3), (4) and (5), where the non-perturbative points are compared to
the perturbative (2/3)jSF running and both statistical and systematic uncertainties are separately
displayed. We found that # = 9 resulted in limited statistical uncertainties and very small systematic
ones, as it is possible to notice from the fact that the non-perturbative points approach the perturbative
running with the same slope at `pt. The only exception to the generally observed behaviour is
the matrix element *̂22, and the cause of this disagreement could be due to the very large NLO
anomalous dimension or to some problem in the fit of the SSF f22(D) which we are going to
investigate in the near future.

5. Conclusions

In this work we computed the non-perturbative renormalisation of the Δ� = 2 four-fermion
operators introduced in Eq. (1), investigating the RG running and mixing of the operator basis in
the jSF scheme in #f = 3 massless QCD, between the low energy scale `0 ∼ O(4) GeV and the
high energy scale `pt ∼ O(103) GeV. At the latter scale we performed the matching with the NLO
perturbative running by following the strategy explained in [1, 2].
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Figure 4: Non-perturbative running for the matrix elements 2|3 of the evolution operator Û(`) (points in red,
# = 9). The results are compared to the NLO prediction (black curve). The curves in blue are built evolving
non-perturbatively the ±(3/3)jSF runnings and quantify the systematic error.

The statistical uncertainties have been evaluated through the bootstrap analysis of the simulated
data and have been propagated in the various computations. The systematic uncertainties due to the
choice of the scale `pt, at which non-perturbative and perturbative results are matched, depend on
the number of steps # in Eq. (14). We have minimised such uncertainties by increasing # up to a
value for which the non-perturbative points approach the perturbative running with the same slope at
the corresponding scale `pt, while trying to keep simultaneously the statistical error under control.
Finally, the systematic uncertainties related to the lack of knowledge of the higher perturbative orders
have been roughly estimated by choosing an order of magnitude guess for the NNLO anomalous
dimension matrix $2. This question deserves however further studies.

Our preliminary results seem to suggest that the use of NLO perturbation theory down to scales
ofO(4) GeV may be problematic, as it can be seen in the plots of Û. We have still to finish assessing
the systematics but, if confirmed, these results would pose a serious question about the opportunity of
using Wilson coefficients evaluated perturbatively down to a scale of O(3) GeV, at which presently
computed hadronic matrix elements are renormalized.
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