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In this article we investigate the real-time dynamics in the (1 + 1)-dimensional U(1) gauge
theory called the Schwinger model by using variational quantum algorithms. Specifically, we
first prepare the ground state of the Hamiltonian without external electric field via the variational
quantum eigensolver, and then perform real-time evolution under the Hamiltonian in the presence
of the external field using the variational quantum simulation method. The same ansatz is used
for both algorithms which reduces the overall depth of the quantum circuit. We test our protocol
by using a noiseless statevector simulator and confirm that results from the quantum algorithms

are consistent with those obtained by exact diagonalization. This article summarizes our previous
work [1].
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1. Introduction

In recent years, there has been an increasing interest in digital quantum simulation in the context
of high-energy physics since the seminal work by Jordan, Lee, and Preskill [2]. In particular, by
using quantum simulation, we can investigate real-time dynamics, models with a topological term,
and those with a finite chemical potential, which cannot be treated naively by the conventional
Monte-Carlo method. As a prototype of (3 + 1)-dimensional non-Abelian gauge theories (e.g.,
QCD), the (1 + 1)-dimensional U(1) gauge theory known as the Schwinger model [3] is frequently
used for benchmarking quantum simulation algorithms (see e.g. [4-7]). The Schwinger model
is simple enough to implement but still exhibits non-trivial phenomena, such as confinement and
charge screening. We can also include a topological term in the Lagrangian which cannot be studied
via the Monte-Carlo method naively.

In this work, we focus on the Schwinger model with a topological term to study the effects
of an external electric field. Specifically, we first prepare the ground state in the absence of the
external field, and then suddenly turn on the external field (the quantum quench) to perform real-
time evolution under the Hamiltonian in the presence of the external field. Two variational quantum
algorithms are used for this purpose: the variational quantum eigensover (VQE) for ground state
preparation, and the variational quantum simulation (VQS) method proposed by Li and Benjamin [8]
for real-time evolution.

This article is organized as follows. In Section 2, we introduce the Schwinger model and
define the physical states and observables of interest. Section 3 explains the variational quantum
algorithms used for ground state preparation and real-time evolution. The results from our numerical
simulation are presented in Section 4. Finally, we summarize our work and discuss possible future
directions in Section 5.

2. Model
The continuum Lagrangian of the Schwinger model with a topological term is given by
1 oo . go v
Leon = _ZF”VF +igyH (0 +igAy — m)y + EEMVF . (D)

where the third term is a topological term. We can obtain the lattice Hamiltonian with lattice
spacing a by using the Kogut-Susskind formalism [9] as follows.
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where w = 1/(2a), J = g?a/2 and ¢ = 6/(27). To have a nonzero value g corresponds to
the presence of the external electric field. Besides, x;, is a staggered fermion, and L,, U, are
link variables corresponding to the gauge degrees of freedom. These lattice variables satisfy the
following commutation relations.

{ij)(m}:‘smn’ {Xn,/\/m} =0, [Un’ Lm] = 0mnUn .
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Furthermore, the physical states must satisfy Gauss’s law

1-(-1)"

Ln - Ln—l = XZXn - ) s (3)

to guarantee gauge symmetry. By fixing L_; = 0, U, = 1 and solving these constraints, we can fully
eliminate the gauge degrees of freedom from the model. Then the resulting fermionic Hamiltonian
can be easily mapped to a spin system via the Jordan-Wigner transformation [10] given as

= Z+(l)
nesy (3 Ay

i=0
up to an irrelevant constant.
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Next, let us specify the quantum states that we will simulate. We first prepare the ground
state |Wgs(¢g = 0)) in the absence of the external field. Then the external field g is turned on
suddenly at + = 0. We perform real-time evolution under the Hamiltonian with a nonzero g to
have |¥ (1)) = e 1Ha#! |Psg(g = 0)) at each time step.

Finally, we evaluate the following three observables using the obtained states |¥(¢)). The first
one is the electric field whose spin description is given by

N-1 n N-1 n
8(t>=%§kzz‘6<zk>t aw 2 ) e, s)

where (o), := (W(r)| ® |¥(7)). The second observable is the chiral condensate written as

N-1
(1) =5 2 ()" Za (©6)
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in the spin representation. This gives an approximate metric for the particle density when the value
of mass is not too large. The final observable we will consider is the U(1) charge defined by

1 N-1
=~ ) (Zu) . ™)

which must be conserved under the evolution under the exact Hamiltonian (4).

3. Method

This section explains the two variational algorithms we will use for the simulation. Our
protocol is divided into two parts. The first part is state preparation, which we implement using
VQE. The second part is real-time evolution under the Hamiltonian with a nonzero g. We perform
this simulation via the VQS method [8, 11].

First, we introduce a parameterized state ansatz | (a, B8,7)) which we will utilize for both
the state preparation and real-time evolution. Specifically, we repeat the same structure L times to
construct the ansatz as

I',[/(Cl’, ﬂ’ 7)> =Ur-1 UpVinit |0> . (8)
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Each layer is given by
Vinie = | | Xa, ©)
n:even
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This ansatz, called the Hamiltonian variational ansatz (HVA) [12—14], mimics the Suzuki-Trotter
decomposition of real-time/adiabatic time evolution and is thus expected to be useful for both state
preparation and real-time evolution. This decomposition also preserves U (1) symmetry which has
to be preserved under the exact time evolution via the Hamiltonian H. Below, we will denote the
whole set of parameters by A := (@, Bo, Y0, > ¥L—1, BL-1,YL-1)-

The VQE is a hybrid algorithm, where a quantum circuit evaluates the expectation value of the
target Hamiltonian (4) in the ansatz

C(A) = W (D|Hg=0l¥ (D)) . (14)

and then the classical optimizer tries to minimize the cost function C(A1). We denote the optimized
parameters as Aop.

Next, we use the VQS method for the real-time evolution. The time evolution governed by
Schrodinger’s equation is translated into the evolution equation of the parameters via McLachlan’s
variational principle [15] given by

D Mijd; =V, (15)
i,J
where
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Note that H is the Hamiltonian with a nonzero g for the quench dynamics. We evaluate coef-
ficients M;;,V; by using a quantum circuit given in [8, 11] and update parameters according to
Eq. (15) by using a classical computer. Since we use the same ansatz for VQE and VQS, we simply
set A(t = 0) = Aop to implement the quench dynamics. This reduces the overall circuit depth
significantly.

4. Results

In this section, we compare the results from the variational quantum algorithms with those from
exact diagonalization (ED) to test our protocol. The quantum circuits are implemented by using a
noiseless statevector simulator called Qulacs [16] and ED results are obtained from QuSpin [17].

4.1 State preparation via VQE

First, we present the results of the state preparation in the absence of the electric field g. We
investigate the accuracy with ag = m/g = 1 fixed and the number of depths L increasing. A
metric of accuracy is defined by 7(E) := (Emax — EvQE)/(Emax — Emin), Where Emaymin are the
highest/lowest eigenvalues of the Hamiltonian H obtained by ED. Fig 1 shows the metric of accuracy

N=4, ag=1.0, m/g=1.0, g=0
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Figure 1: Ground state preparation via VQE: a metric of accuracy r(E) := (Emax — EvQE)/(Emax — Emin)
for various L. Dots/error bars show the median and 25-75 percentiles of 20 samples.

for each layer L. We repeat experiments 20 times starting from different random initializations.
The dots represent the median for those experiments and error bars show the 25-75 percentiles.
This figure shows that one can obtain the ground state with high accuracy r(E) > 0.99 for all L
and accuracy improves drastically for L > 4.

4.2 Quench dynamics via VQS

Next, we perform the real-time evolution via the VQS method in the presence of the electric
field ¢ = 2. We first evaluate the coefficients M;; and V; at each time step and obtain the time-
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dependence of parameters A(¢). By using these parameters, we evaluate the dynamics of three
physical observables explained in Section 3. First of all, we observe that the U(1) charge is

(a) N=4, ag=1.0, m/g=1.0, g=2.0, L=3, 6t=0.01 (b) N=4, ag=1.0, m/g=1.0, g=2.0, L=3, 6t=0.01
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(c) N=4, ag=1.0, m/g=1.0, g=2.0, L=3 , 6t=0.01 (d) N=4, ag=1.0, m/g=1.0, g=2.0, L=3 , 6t=0.01
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Figure 2: Real-time dynamics of physical observables for N =4,a-g =1.0,m/g =1.0,g =2.0 with L =3
and ot = 0.01. Dots/error bars show the median and 25-75 percentiles of 20 samples: (a) electric field, (b)
chiral condensate, (c), (d) ratio between the values of observables obtained from ED and VQS

preserved under the VQS evolution, which is expected from the choice of our ansatz. Fig 2 shows
the other two observables. One can see that the VQS results are consistent with those obtained
from ED up to a few percent errors. The dependence of systematic errors on the expressivity of the
ansatz (i.e., depth L) and the time increment 67 = Tipax/Nyep, Where Tiyax is the maximal time for
the simulation and Ny, is the number of steps, are also investigated in [1].

We can observe that for ¢ - g < 3 the magnitude of the electric field decreases while the value
of the chiral condensation increases. A possible interpretation for this is that the electric field gives
its energy to the fermions and fermions are pair-created as a result.

5. Summary and discussion

In this work, we investigated the quench dynamics in the Schwinger model by using the
two variational quantum algorithms; the VQE and VQS. We checked our proposed protocol by
comparing the results from VQE and VQS with those from ED and found that they are consistent.
One can interpret these results as a fermion pair-creation due to the external electric field.

There are many possible future directions to be addressed. First of all, investigating the effects
of a finite number of shots and quantum noise would be useful to understand how feasible it would
be to implement this approach on real quantum devices. In particular, it would be important to
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understand how required resources (e.g., the number of gates, the number of shots) to achieve
a certain accuracy scale with the number of qubits and the lattice spacing a. It would be also
interesting to study the systematic error coming from the choice of an ansatz. Finally, it would be
important to consider an extension to higher-dimensional and/or non-Abelian gauge theories.
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