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In this proceeding, we present our ongoing calculations related to the thermodynamics of (2+1)-
flavor Quantum Chromodynamics (QCD) using Möbius Domain Wall fermions. This report
presents our findings on the second order quark number susceptibilities and conserved charge
fluctuations. These calculations were performed on the line of constant physics (LCP), where
the light quark mass 𝑚𝑙 is set to 0.1 times the strange quark mass 𝑚𝑠 . Additionally, we use the
hadron resonance gas (HRG) model to compare against our results. This comparison is specific
to temperatures at or below the pseudo-critical temperature, denoted as 𝑇𝑝𝑐 . We determine the
pseudo-critical temperature from a preliminary analysis using the peak of the disconnected chiral
susceptibility for the LCP with 𝑚𝑙 = 0.1𝑚𝑠 to be 𝑇𝑝𝑐 = 165(2) MeV.
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1. Introduction

RHIC and LHC are two central experimental facilities for heavy ion collision (HIC) experi-
ments. The collisions of heavy nuclei facilitate the creation of quark-gluon plasma (QGP), a distinct
state of matter. Upon cooling, the QGP undergoes a transition to ordinary hadronic matter, and a
freeze-out occurs during this cooling process.

Lattice QCD calculations near freeze-out can be directly confronted with HIC experimental
data of conserved charge fluctuations. In heavy ion collisions, the three conserved charges are
baryon number (𝐵), electric charge (𝑄), and strangeness number (𝑆). However, among them,
only electric charge fluctuations are accessible in experiments, as detectors can measure almost all
charged particles. Proton and kaon fluctuations are used as proxies for baryon number fluctuations
and strangeness fluctuations, respectively [1].

However, calculations of electric charge fluctuations on the lattice pose computational chal-
lenges, as this observable is sensitive to the light pion spectrum in the hadronic phase. Pions
are the pseudo-goldstone bosons of the spontaneous chiral symmetry 𝑆𝑈 (2)𝐿 × 𝑆𝑈 (2)𝑅 breaking,
which explains their small mass. A lattice action with better chiral properties is required to get
the correct pion spectrum on the finite lattice. For instance, in staggered fermion formalism, the
taste symmetry violations can distort the pion spectrum, leading to large discretization errors in
electric charge fluctuations. We use Möbius Domain Wall fermions [2], which are computationally
expensive but have a better control on the chiral symmetry on the lattice. The pion spectrum will be
intact at finite lattice spacing. Previous work on the study of the chiral phase transition on the line of
constant physics (LCP) (𝑚𝑙 = 𝑚𝑠/10) using Möbius Domain Wall fermions is presented in [3, 4].
In this proceeding, we focus on quark number susceptibility and conserved charge fluctuations. In
the following sections, all the dimensionful lattice parameters are expressed in lattice units, except
otherwise stated explicitly. Previous exploratory work of quark number susceptibility using Domain
wall fermions is found in [5], and free field theory calculations are in [6].

2. Lattice Setup

The gauge configurations for (2+1)-flavor QCD are generated using the Möbius Domain Wall
fermions (MDWFs) and tree-level improved Symanzik gauge action, using the Rational hybrid
Monte Carlo algorithm (RHMC) [3, 4]. The MDWFs Dirac operator is parameterized with 𝑏 =

1.5, 𝑐 = 0.5, 𝑀5 = 1, where 𝑏 and 𝑐 are the Möbius parameters in the Möbius Domain Wall fermions
Kernel, and 𝑀5 is the mass parameter in the fifth dimension. The fifth dimension is set to a length of
𝐿𝑠 = 12. Following [7], this parameter1 choice, combined with three levels of stout-link smearing,
effectively minimizes chiral symmetry violations.

In previous calculations, the lattice spacing 𝑎 is determined as a function of gauge coupling 𝛽

using the 𝑡0 scale [3]. We perform all the simulations on a line of constant physics (LCP), i.e., as
the temperature changes the bare quark masses have been adjusted such that the values of hadron
masses in physical units, evaluated at zero temperature, stay approximately constant. We choose a

1The notation of the parameters we follow is summarized in the supplement material of [2], which is different from
the one used in [7]
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line of constant physics (LCP) as follows:

𝑚𝑙

𝑚𝑠
=
𝑚𝑙𝑎𝑡𝑡
𝑙

𝑚𝑙𝑎𝑡𝑡𝑠

= 0.1. (1)

𝑚𝑙 and 𝑚𝑠 are the light and strange quark mass respectively. And, 𝑚𝑙𝑎𝑡𝑡
𝑓

, ( 𝑓 = 𝑙, 𝑠) is the
multiplicatively renormalizable mass. A strategy for determining the line of constant physics (LCP)
with minimal zero-temperature simulations is outlined in [3]. However, due to the absence of
zero temperature data at 𝛽 = 4.00 the obtained 𝑚𝑠 (𝛽) values were found to be smaller than the
physical strange quark mass (𝑚𝑝ℎ𝑦𝑠

𝑠 = 92.2(1) MeV) [8] for 𝛽 ≤ 4.10. Figure 1 (left) compares the
old LCP (LCP2022) with the corrected LCP (LCP2023). We have performed simulations on two
temporal extents, 𝑁𝜏 = 12 where the 𝛽 range is 4.00 ≤ 𝛽 ≤ 4.17 and 𝑁𝜏 = 16 where the 𝛽 range is
4.10 ≤ 𝛽 ≤ 4.30. Thus, on 𝑁𝜏 = 12 lattices, the zero temperature hadron masses are expected to
be smaller than those on 𝑁𝜏 = 16 lattices.

Due to the finite 𝐿𝑠, one needs to take care of the residual mass𝑚𝑟𝑒𝑠. As outlined in [3] the𝑚𝑟𝑒𝑠
is the same size as the error of 𝑚𝑝ℎ𝑦𝑠

𝑠 while the size is comparable to the 𝑚𝑝ℎ𝑦𝑠

𝑙
. The simulations are

performed in two rounds. First, gauge configurations were generated for 𝑁𝜏 = 12, 16 lattices for the
LCP (𝑚𝑙 = 0.1𝑚𝑠), and measurements of 𝑚𝑟𝑒𝑠, chiral observables are performed. In the next round,
the input quark masses for simulations are prepared by subtracting the 𝑚𝑟𝑒𝑠(𝑚 𝑓 = 𝑚𝑙𝑎𝑡𝑡

𝑓
− 𝑚𝑟𝑒𝑠).

Figure 1 (right) shows 𝑚𝑟𝑒𝑠 as a function of 𝛽. For 𝑁𝜏 = 12 lattices, within the 𝛽 range of
4.00 ≤ 𝛽 ≤ 4.17, new gauge configurations were generated using 𝑚 𝑓 = 𝑚𝑙𝑎𝑡𝑡

𝑓
− 𝑚𝑟𝑒𝑠, as 𝑚𝑟𝑒𝑠 is

the same size as 𝑚𝑙𝑎𝑡𝑡
𝑙

and measurements are performed on these new configurations. For 𝑁𝜏 = 16
lattices, where the 𝛽 range is 4.10 ≤ 𝛽 ≤ 4.30 and 𝑚𝑟𝑒𝑠 is significantly smaller than 𝑚𝑙𝑎𝑡𝑡

𝑙
, we

perform reweighting. It’s noteworthy that 𝑚𝑟𝑒𝑠 values are almost independent of the light quark
mass (𝑚𝑙𝑎𝑡𝑡𝑢 ), suggesting that these𝑚𝑟𝑒𝑠 values can be used to tune input quark masses in simulations
for the physical light quark masses.
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Figure 1: (left)𝑚𝑠 (𝛽) as a function of gauge coupling. (right) 𝑚𝑟𝑒𝑠 and one tenth of the strange quark mass
as a function of 𝛽.
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𝑁𝜎 𝑁𝜏 #Config. per Temp. 𝑁𝑛 for (𝐷 𝑓

1 )
2 𝑁𝑛 for 𝐷 𝑓

2
24 12 ∼ 400 200 100
32 16 ∼ 200 200 100

Table 1: Details of the simulation parameters. 𝑁𝜎 and 𝑁𝜏 are spatial and temporal dimensions respectivley.
𝑁𝑛 is the number of Gaussian random noise.

3. Quark Number Susceptibility with Möbius Domain Wall fermions

For two light flavors (𝑢, 𝑑) and one strange flavor(𝑠) in QCD, the pressure can be represented
via a Taylor expansion in terms of the quark chemical potentials:

𝑃

𝑇4 =
1

𝑉𝑇3 ln 𝑍 (𝑇,𝑉, ®𝜇) =
∞∑︁

𝑖, 𝑗 ,𝑘=0

𝜒𝑢𝑑𝑠
𝑖 𝑗𝑘

𝑖! 𝑗!𝑘!
�̂�𝑖𝑢 �̂�

𝑗

𝑑
�̂�𝑘𝑠 .

𝜒𝑢𝑑𝑠𝑖 𝑗𝑘 =
1

𝑉𝑇3
𝜕𝑖+ 𝑗+𝑘 ln 𝑍 (𝑇,𝑉, ®𝜇)

𝜕�̂�𝑖𝑢𝜕�̂�
𝑗

𝑑
𝜕�̂�𝑘𝑠

�����
®𝜇=0

; provided 𝑖 + 𝑗 + 𝑘 is even. (2)

Here, �̂� 𝑓 =
𝜇 𝑓

𝑇
for 𝑓 ∈ {𝑢, 𝑑, 𝑠} and ®𝜇 = (𝜇𝑢 , 𝜇𝑑 , 𝜇𝑠). The coefficients 𝜒𝑢𝑑𝑠

𝑖 𝑗𝑘
represent the

quark number fluctuations at ®𝜇 = ®0: To implement the quark chemical potential into the Möbius
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Figure 2: Diagonal (left) and Off-diagonal(right) quark number susceptibilities at the Line of constant
physics (𝑚𝑙 = 𝑚𝑠/10) for the 243 × 12 × 12. The black line represents the Boltzmann limit.

Domain Wall fermions action, we use the prescription (1±𝛾4)𝑈±4(𝑥) → (1±𝛾4)𝑒±�̂�𝑈±4(𝑥) [9, 10].
The partition function, 𝑍 , is defined as:

𝑍 =

∫
𝐷𝑈

∏
𝑓 =𝑢,𝑑,𝑠

det 𝑀 (𝑚 𝑓 , 𝜇 𝑓 ) exp[−𝑆𝑔],

det 𝑀 (𝑚 𝑓 , 𝜇 𝑓 ) =
[

det 𝐷 (𝑚 𝑓 , 𝜇 𝑓 )
det 𝐷 (𝑚𝑃𝑉 , 𝜇 𝑓 )

]
. (3)

The diagonal and off-diagonal quark number susceptibility for Möbius Domain Wall fermions
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are defined as (with 𝑚𝑃𝑉 ≡ 1):2

𝜒
𝑓

2 /𝑇2 =
𝑁𝜏

𝑁3
𝜎

𝜕2 ln 𝑍

𝜕�̂�2
𝑓

=

〈
𝜕2

𝜕�̂�2
𝑓

ln det 𝑀 (𝑚 𝑓 , 𝜇 𝑓 )
〉
+
〈(

𝜕

𝜕�̂� 𝑓
ln det 𝑀 (𝑚 𝑓 , 𝜇 𝑓 )

)2
〉

(4)

= 〈𝐷 𝑓

2 〉 + 〈(𝐷 𝑓

1 )
2〉 (5)

𝜒
𝑓 𝑔

11 /𝑇2 =
𝑁𝜏

𝑁3
𝜎

𝜕2 ln 𝑍

𝜕�̂� 𝑓 �̂�𝑔
=

〈(
𝜕

𝜕�̂� 𝑓
ln det 𝑀 (𝑚 𝑓 , 𝜇 𝑓 )

) (
𝜕

𝜕�̂�𝑔
ln det 𝑀 (𝑚𝑔, 𝜇𝑔)

)〉
(6)

= 〈𝐷 𝑓

1 𝐷
𝑔

1 〉 (7)

(𝐷 𝑓

1 )
2 is the most noisy part in our calculations. We have used 200 Gaussian random sources for

estimating (𝐷 𝑓

1 )
2 and 100 Gaussian random sources for estimating 𝐷

𝑓

2 , see in Table1. We utilize
spin dilution and time slice dilution (see appendix) to calculate (𝐷 𝑓

1 )
2 using the unbiased estimator

method. Moreover, we have utilized the Even-Odd dilution method to calculate 𝐷
𝑓

2 .
Fig. 2 represents the quark number susceptibilities as a function of temperature computed using

Möbius Domain Wall fermions in (2+1)-flavor QCD along the line of constant physics (𝑚𝑙 = 0.1𝑚𝑠).
The value of these susceptibilities stays small at smaller temperatures and they start a rapid change
near the pseudo-critical temperature (𝑇𝑝𝑐 ∼ 165(2) MeV) and approach an asymptotic value at
higher temperatures (𝑇 ∼ 190 MeV). These results are qualitatively consistent with those from
staggered discretization for physical quark masses [11, 12]. In the next section, we will use these
quark number susceptibilities and construct conserved charge fluctuations.

4. Conserved charge fluctuations with Möbius Domain Wall fermions

We present all the second-order fluctuations of conserved charges using the relation between
baryon (𝜇𝐵), electric charge (𝜇𝑄), and strangeness (𝜇𝑆) chemical potentials and the quark chemical
potentials as [11]:

𝜇𝑢 =
1
3
𝜇𝐵 + 2

3
𝜇𝑄, 𝜇𝑑 =

1
3
𝜇𝐵 − 1

3
𝜇𝑄, 𝜇𝑠 =

1
3
𝜇𝐵 − 1

3
𝜇𝑄 − 𝜇𝑆 . (8)

Second-order conserved charge fluctuations can be written as:

©«

𝜒𝐵2
𝜒
𝑄

2
𝜒𝑆2
𝜒
𝐵𝑄

11
𝜒
𝑄𝑆

11
𝜒𝐵𝑆11

ª®®®®®®®®®¬
=

©«

1
9 (2𝜒

𝑢
2 + 𝜒𝑠2 + 2𝜒𝑢𝑑11 + 4𝜒𝑢𝑠11 )

1
9 (5𝜒

𝑢
2 + 𝜒𝑠2 − 4𝜒𝑢𝑑11 − 2𝜒𝑢𝑠11 )

𝜒𝑠2
1
9 (𝜒

𝑢
2 − 𝜒𝑠2 + 𝜒𝑢𝑑11 − 𝜒𝑢𝑠11 )

1
3 (𝜒

𝑠
2 − 𝜒𝑢𝑠11 )

−1
3 (𝜒

𝑠
2 + 2𝜒𝑢𝑠11 )

ª®®®®®®®®®¬
(9)

2Here, we simplify the notation by omitting the index if its value is zero, e.g., 𝜒𝑢𝑑𝑠200 ≡ 𝜒𝑢2 , 𝜒𝑢𝑑𝑠110 ≡ 𝜒𝑢𝑑11 , and
𝜒𝑢𝑑𝑠101 ≡ 𝜒𝑢𝑠11 .
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Figure 3: Diagonal second order fluctuations as a function of temperature at the line of constant physics
(𝑚𝑙 = 0.1𝑚𝑠). The dashed line is the HRG calculations after modifying the 𝑀𝜋 ∼ 223 MeV and 𝑀𝐾 ∼
508 MeV in the QMHRG2020 [13] list. The band represents the pseudo-critical temperature obtained from
the peak of disconnected chiral susceptibility as shown in the appendix B.

4.1 Diagonal Second Order Fluctuations

Figure 3 presents the diagonal conserved charge fluctuations observed using MDWF fermions
in (2 + 1)-flavor QCD for 𝑁𝜏 = 12, 16, which are compared with QMHRG2020 results [13, 14].
At lower temperatures, the fluctuations shown in Figure 3 are explained by hadronic degrees of
freedom. In the HRG model, the largest contributions to 𝜒𝐵2 , 𝜒𝑄2 , and 𝜒𝑆2 come from nucleons,
pions, and kaons, respectively, at lower temperatures. For 𝑚𝑙 = 0.1𝑚𝑠, the hadron masses are larger
than their physical values. Consequently, the values from HRG calculations using these larger
masses will be slightly smaller than those calculated with the physical spectrum. The differences
in 𝜒

𝑄

2 between lattice data and QMHRG2020 can be attributed to our slightly heavier light quark
masses. The heavier light quark mass results in 𝑀𝜋 ∼ 223 MeV and 𝑀𝐾 ∼ 508 MeV, from the
leading-order chiral perturbation theory. This means that compared to their physical counterparts,
the pions and kaons in our simulations are heavier by approximately 60% and 2%, respectively.
Furthermore, physical pions are three times lighter than physical kaons. Therefore, we observed
that 𝜒𝑄2 is sensitive to the heavier ground state pion and kaon mass, as shown by the (green) dashed
line in Figure 3. However, the effect on 𝜒𝑆2 due to the change in ground state kaon mass is less
pronounced. Given that nucleons are significantly heavier than pions and kaons, it is anticipated
that the QMHRG2020 curves for 𝜒𝐵2 will be slightly smaller and consistent with our lattice data.

Moreover, at least a part of the difference between the 𝑁𝜏 = 12 and 𝑁𝜏 = 16 data for 𝜒𝑄2 can be
understood from HRG arguments. As shown in Figure 1 (left), the mistuning of the LCP results in
smaller pion and kaon masses on the 𝑁𝜏 = 12 lattice than the 𝑀𝜋 ∼ 223 MeV and 𝑀𝐾 ∼ 508 MeV,
which are obtained for 𝑁𝜏 = 16 lattices. Therefore, a part of the observed differences in 𝜒

𝑄

2 in two
different temporal extents can be attributed to the mistuning of the LCP.

4.2 Off-Diagonal Second Order Fluctuations

Figure 4 presents off-diagonal conserved charge fluctuations using MDWF fermions in (2+1)-
flavor QCD, alongside comparisons with QMHRG2020 [13, 14]. In the HRG framework, 𝜒𝐵𝑄11 ,
𝜒
𝑄𝑆

11 , and 𝜒𝐵𝑆11 are dominated by charged nucleons, charged kaons, and strange baryons, respectively.
As discussed in the previous section, it is expected that the HRG values for these fluctuations will
also be slightly reduced and are consistent with the lattice data.
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Figure 4: Off-diagonal second order fluctuations as a function of temperature at the Line of constant
physics (𝑚𝑙 = 0.1𝑚𝑠). The dashed line is the HRG calculations after modifying the 𝑀𝜋 ∼ 223.5 MeV and
𝑀𝐾 ∼ 508.4 MeV in the QMHRG2020 [13] list. The blue band represents the pseudo-critical temperature
obtained from the peak of disconnected chiral susceptibility[4].

5. Summary and outlook

We present the quark number susceptibility and all the second-order conserved charge fluctu-
ations for (2+1)-flavor Quantum Chromodynamics (QCD) using Möbius Domain Wall fermions.
These simulations are performed along the line of constant physics (LCP), where the light quark
mass 𝑚𝑙 is 0.1 times the strange quark mass 𝑚𝑠. We compare our calculations with those from
the Hadron Resonance Gas (HRG) model with the QMHRG2020 particles list. We argue that
second-order conserved fluctuations are consistent with the HRG model with heavier hadrons at
temperatures below 𝑇𝑝𝑐. Moreover, we argue that electric charge fluctuations are particularly sen-
sitive to the ground state pion and kaon mass at low temperatures. As part of our ongoing research,
we are extending these simulations with physical values for the light quark masses.
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Appendix

A. Stochastic error reduction in trace calculations

To evaluate the traces we employ stochastic trace estimators,

𝐷
𝑓

1 = 𝑇𝑟𝐷 (𝑚 𝑓 )−1 𝑑𝐷

𝑑𝜇 𝑓
− 𝑇𝑟𝐷 (𝑚𝑃𝑉 )−1 𝑑𝐷

𝑑𝜇 𝑓
(10)

=
1
𝑁𝑛

𝑁n∑︁
𝑗

[
𝜂
†
𝑗
𝐷 (𝑚 𝑓 )−1 𝑑𝐷

𝑑𝜇 𝑓
𝜂 𝑗 − 𝜂

†
𝑗
𝐷 (𝑚𝑃𝑉 )−1 𝑑𝐷

𝑑𝜇 𝑓
𝜂 𝑗

]
(11)
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timeslice dilution

Figure 5: Stochastic error of (𝐷 𝑓

1 )
2 with the

number 𝑀−1.

Where 𝜂 𝑗 is the Gaussian random noise vector
and 𝑁𝑛 is the total number of noise vectors. We
have found that to decrease the stochastic error in
(𝐷 𝑓

1 )
2 useful to use identical noise vectors for both

the flavor part and the Pauli-Villars part, as shown in
Eq.(11). Below we will discuss how to further reduce
the stochastic error using the dilution method.

A.1 Dilution

The dilution refers to dividing the single random
noise vector into N components, with only one com-
ponent assigned nonzero values at any given time.
Then the trace measurement formula can be written
as,

𝑇𝑟𝐷 (𝑚)−1 𝑑𝐷

𝑑𝜇 𝑓
=

1
𝑁𝑛

𝑁n∑︁
𝑗

𝑁∑︁
𝑎=1

𝜂
†
𝑎 𝑗
𝐷 (𝑚)−1 𝑑𝐷

𝑑𝜇 𝑓
𝜂𝑎 𝑗 (12)

Where, 𝑚 can be both 𝑚 𝑓 and 𝑚𝑝𝑣 . We explore three possibilities of the dilution,
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1. Even-Odd splitting of the noise vector: This method splits the single noise vector into two
parts (𝑁 = 2) in even and odd lattice sites.

2. Spin partition: The approach involves splitting the noise vector into four spin components
(𝑁 = 4) and retaining non-zero values in only one spin component at a time [22].

3. Time slice dilution We employ a splitting technique for the noise vector based on a modulo
4 operation, 𝑡 mod 4. This method allows us to divide the noise vector into four distinct
components, corresponding to different time slices.

The dilution method will also increase the number of inverses of the Dirac operator. Hence, in
Fig.5 we compare the stochastic error for a single gauge configuration with the number of inverses
and see that indeed the dilution method can reduce the stochastic error 2−3 times. The spin dilution
and the time slice dilution are the two most cost-effective methods. We use spin dilution for the
𝑁𝜏 = 12 lattices and time slice dilution for the 𝑁𝜏 = 16 lattices.

B. Determination of pseudo-critical temperature 𝑇𝑝𝑐 using chiral observables

In Figure 6 we show the disconnected chiral susceptibility (𝜒𝑑𝑖𝑠𝑐) in the 𝑀𝑆 scheme for the
LCP 𝑚𝑙 = 0.1𝑚𝑠. We show the results for the temporal extents of 𝑁𝜏 = 12 with aspect ratios
𝑁𝜎/𝑁𝜏 = 2, 3, 4 and 𝑁𝜏 = 16 with the aspect ratio 𝑁𝜎/𝑁𝜏 = 2. The value of pseudo-critical
temperature (𝑇𝑝𝑐) is obtained from a preliminary analysis and using the peak of the susceptibilities
for different lattice spacings and volumes. Despite the mismatch of the LCP, the discretization
effects between 𝑁𝜏 = 12 and 𝑁𝜏 = 16 are smaller, and the peak of the 𝜒𝑑𝑖𝑠𝑐 results in a consistent
pseudo-critical temperature determination. Moreover, for the 𝑁𝜏 = 12 lattice, where we have 3
aspect ratios, we extrapolate the 𝑇𝑝𝑐 to the 𝑉 → ∞ limit. In particular, from our preliminary
analysis, we obtained 𝑇𝑝𝑐 = 165(2) MeV. This pseudo-critical temperature, however, is not unique
and it will depend on the observable.
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Figure 6: Disconnected chiral susceptibility for the LCP 𝑚𝑙 = 0.1𝑚𝑠 .

10


	Introduction
	Lattice Setup
	Quark Number Susceptibility with Möbius Domain Wall fermions
	Conserved charge fluctuations with Möbius Domain Wall fermions
	Diagonal Second Order Fluctuations
	Off-Diagonal Second Order Fluctuations

	Summary and outlook
	Stochastic error reduction in trace calculations
	Dilution

	Determination of pseudo-critical temperature Tpc using chiral observables

