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I present an overview of the calculations of the isovector axial vector form factor of the nucleon,
𝐺𝐴(𝑄2), using lattice QCD. Based on a comparison of results from various collaborations, a case
is made that lattice results are now consistent within 10%. A similar level of uncertainty is found
also in the axial charge 𝑔𝑢−𝑑

𝐴
, the mean squared axial charge radius, ⟨𝑟2

𝐴
⟩, the induced pseudoscalar

charge 𝑔∗
𝑃

, and the pion-nucleon coupling 𝑔𝜋𝑁𝑁 . These lattice results for 𝐺𝐴(𝑄2) are already
compatible with those obtained from the recent MINER𝜈A experiment but lie 2-3𝜎 higher than
the phenomenological extraction from the old 𝜈-deuterium bubble chamber scattering data for
𝑄2 > 0.3 GeV2. Fits to our data show that the dipole ansatz does not have enough parameters to
parameterize the form factor over the range 0 ≤ 𝑄2 ≤ 1 GeV2, whereas even a 𝑧2 truncation of the 𝑧-
expansion or a low order Padé are sufficient. Looking ahead, lattice QCD calculations will provide
increasingly precise results over the range 0 ≤ 𝑄2 ≲ 1 GeV2, and MINER𝜈A-like experiments
will extend the range to𝑄2 ∼ 2 GeV2 or higher. To increase precision of lattice data to the percent
level, new developments are needed to address two related issues: the exponentially falling
signal-to-noise ratio in all nucleon correlation functions and removing excited state contributions.
Nevertheless, even with the current methodology, significant reduction in errors is expected over
the next few years with higher statistics data on more ensembles closer to the physical point.
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1. Introduction

The axial charge, 𝑔𝑢−𝑑
𝐴

, gives the strength of the coupling of the weak current to the nucleons.
It has been determined very accurately from the asymmetry parameter 𝐴 (relative to the plane
defined by the directions of the neutron spin and the emitted electron) in the decay distribution of
the neutron, 𝑛→ 𝑝 + 𝑒− + 𝜈𝑒. The best determination of the ratio of the axial to the vector charge,
𝑔𝐴/𝑔𝑉 , comes from using (i) polarized ultracold neutrons (UCN) by the UCNA collaboration,
1.2772(20) [1, 2], and (ii) cold neutron beam by PERKEO III, 1.27641(45) (33) [3, 4]. Note that,
in the SM, 𝑔𝑉 = 1 up to second order corrections in isospin breaking [5, 6] as a result of the
conservation of the vector current.

The axial charge enters in many analyses of nucleon structure, of the Standard Model (SM),
and in probes of beyond-the-SM (BSM) physics [7, 8]. For example, it enters in the relation between
the Cabibbo-Kobayashi-Maskawa (CKM) matrix element 𝑉𝑢𝑑 and the neutron lifetime, 𝜏𝑛. High
precision extraction of 𝑉𝑢𝑑 , knowing 𝜏𝑛 and 𝑔𝐴, is important for the test of the unitarity of the first
row of the CKM matrix [9–11]. It is needed in the analysis of neutrinoless double-beta decay [12]
and in the rate of proton-proton fusion [13], the first step in the thermonuclear reaction chains that
power low-mass hydrogen-burning stars like the sun.

The axial-vector form factor (AVFF) gives the dependence of this coupling on the momentum
squared transferred by the weak current to the nucleon. It is an input in the theoretical calculation
of the neutrino-nuclei scattering cross-section needed for the analysis of neutrino oscillation exper-
iments [14–16]. The cleanest experimental measurement would be from scattering neutrinos off
liquid hydrogen targets, however, these are not being carried out due to safety concerns. Extractions
from ongoing neutrino scattering experiments (T2K, NOvA, MINERvA, MicroBooNE, SBN) have
uncertainty due to those in the cross-section and the incoming flux, and from the lack of precise
reconstruction of the final state of the struck nucleus. Conversely, uncertainty in the AVFF feeds
into the uncertainty in the incoming neutrino energy that is needed to determine the oscillation
parameters.

The MINER𝜈A experiment [17], using a separation based on kinematics, has recently extracted
the axial-vector form factor of the nucleon from the charged current elastic scattering process 𝜈𝜇𝐻 →
𝜇+𝑛 in which the free proton in the hydrogen (H) (part of the hydrocarbon in the target) gets converted
into a neutron. This opens the door to direct measurements of the nucleon axial-vector form factor
without the need for extraction from scattering off nuclei, whose analysis involves nuclear corrections
that have unresolved systematics. On the theoretical front, lattice QCD provides the best method
for first principal non-perturbative predictions with control over all sources of uncertainty [14, 15].

A recent comparison [18] of results for the AVFF from lattice QCD [19], the MINER𝜈A
experiment [17], and the phenomenological extraction from neutrino-deuterium data [20] showed
that in the near term the best prospects for determining the AVFF will be a combination of lattice
QCD calculations and MINER𝜈A-like experiments. Lattice QCD will provide the best estimates for
𝑄2 ≲ 0.5 GeV2, and be competitive with MINER𝜈A for 0.5 ≲ 𝑄2 ≲ 1 GeV2. For 𝑄2 ≳ 1 GeV2,
new ideas are needed for robust predictions using lattice QCD.

The goal of theory efforts in support of neutrino oscillation experiments is robust calculations
of the cross-section for targets, such as 12𝐶, 16𝑂, and 40𝐴𝑟 , being used in experiments. This involves
a four step process: a precise determination of the AVFF, nuclear models of the ground state of
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the nuclei from which the neutrino scatters, the intra-nucleus evolution of the struck nucleon using
many-body theory to include complex nuclear effects up to ≈ 5 GeV for the DUNE experiment, and
the evolution of the final state particles to the detectors. The overall program requires complete im-
plementation of these within Monte Carlo neutrino event Generators [14–16] with full uncertainty
quantification in each step. The output of the generators is the essential input required by experi-
mentalists for determining neutrino oscillation parameters from current and future experiments.

Here I review the status of lattice QCD calculations of the axial charge, 𝑔𝑢−𝑑
𝐴

and the AVFF.
In addition, note that the flavor diagonal axial charges 𝑔𝑢,𝑑,𝑠,𝑐,𝑏

𝐴
provide the contribution of each

quark flavor to the spin of the nucleon, whose calculation is computationally more expensive due
to the additional disconnected contributions. Current status of results for these nucleon charges
has been reviewed by the Flavor Lattice Averaging Group (FLAG) in 2019 and 2021 [21, 22]).
Including results post FLAG 2021 [23–27], the values from the various calculations with 2+1-
and 2+1+1-flavors of sea quarks lie in the ranges 1.22 ≲ 𝑔𝑢−𝑑

𝐴
≲ 1.32, 0.74 ≲ 𝑔𝑢

𝐴
≲ 0.89,

−0.48 ≲ 𝑔𝑑
𝐴
≲ −0.38, and −0.06 ≲ 𝑔𝑠

𝐴
≲ −0.025. There have been no substantial new results for

flavor diagonal charges since the FLAG reports, so I will not discuss them further in this work.

Based on the results in Refs. [19, 23, 26–29], I present the case that lattice results for AVFF
over the range 0 < 𝑄2 ≤ 1 GeV2 are also available with ≲ 10% uncertainty and agree with
MINER𝜈A results to within a combined sigma as discussed in Ref. [18] but disagree with the
neutrino-deuterium results for𝑄2 > 0.3 GeV2. At the same time, I also highlight the need for much
higher statistics and better control over excited state contributions to nucleon correlators in lattice
calculations for the uncertainty to be reduced to the percent level.

The outline of this review is as follows. I will summarize the methodology and steps in the
calculation of the axial and pseudoscalar form factors in Sec. 2. This includes a discussion of
the nucleon 3-point correlation functions calculated in Sec. 2.1, removing possible excited state
contributions (ESC) in Sec. 2.2, and how form factors are then obtained from them in Sec. 2.3. I then
review the operator constraint imposed on the three form factors, the axial, 𝐺𝐴(𝑄2), the induced
pseudoscalar, 𝐺𝑃 (𝑄2), and the pesudoscalar𝐺𝑃 (𝑄2) by the axial Ward-Takahashi (also referred to
in literature as the partially conserved axial current (PCAC)) identity in Sec. 2.4, and how it provides
a data driven method for validating the enhanced contributions of multihadron, 𝑁𝜋, excited states.
These enhanced excited state contributions are due to the coupling of the axial and pseudoscalar
currents to a pion, i.e., the pion pole dominance hypothesis. Extrapolation of the lattice results
to the physical point defined by the continuum (𝑎 = 0) and infinite volume (𝑀𝜋𝐿 → ∞) limits
at physical light quark masses in the isospin symmetric limit, i.e., 𝑚𝑢 = 𝑚𝑑 set using the neutral
pion mass (𝑀𝜋0 = 135 MeV) is discussed in Sec. 2.5. A consistency check on the extraction of the
axial charge is discussed in Sec. 2.6. I will then review the results for the AVFF obtained by the
various lattice collaborations after extrapolation to the physical point in Sec. 3, and the comparison
of lattice QCD result, the recent MINER𝜈A data, and the phenomenological extraction from the old
neutrino-deuterium scattering data along with my perspective on future improvements in Sec. 4.
The concluding remarks are given in Sec. 5.
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Figure 1: Quark line diagrams for the gauge invariant time-ordered correlation functions 𝐶2pt ( 𝒑; 𝜏) and
𝐶

3pt
𝐽

(𝒒; 𝑡, 𝜏). The gluon lines are shown only to indicate that all possible gluon exchanges between quarks
are included, i.e., it is a fully non-perturbative calculation. The electromagnetic and axial form factors are
calculated by inserting the vector, 𝑉𝜇, and axial, 𝐴𝜇, currents, respectively, with momentum q at times 𝑡 in
between the nucleon source and sink separated by time 𝜏. The construction of the source for the sequential
propagator 𝑃seq is shown schematically in the right panel. The two lower quark lines within the dotted
region are tied at the sink by N , leaving the spin and color indices of the third spinor to serve as the source.

2. Calculation of the axial vector form factors using lattice QCD

The quark line diagrams for the 2-point, 𝐶2pt and the 3-point 𝐶3pt
𝐽

(𝒒; 𝑡, 𝜏) (with the insertion
of the axial, 𝐴𝜇, (or vector 𝑉𝜇) and pseudoscalar, 𝑃, currents) correlators are shown in Fig. 1.
The methodology for calculating these is the same in all ongoing calculations. For 𝐶3pt

𝐽
(𝒒; 𝑡, 𝜏),

two kinds of quark propagators are calculated by solving, using Krylov solvers such as conjugate
gradient and accelerated using multigrid [30], the linear equation 𝐷𝑃 = 𝜂 where 𝐷 is the Dirac
matrix on the lattice and 𝜂 is a source vector. The first, 𝑃, is constructed using a delta function
or smeared 𝜂 and shown moving forward from the source location, i.e., from the left blob in the
right panel in Fig. 1. The second is a sequential propagator, 𝑃seq, shown moving backwards (red
line from the right blob representing the sink) from 𝜂 = 𝑛𝑢𝑐𝑙𝑒𝑜𝑛 source with definite momentum
p 𝑓 . This nucleon source, shown schematically by the part of the diagram lying inside the dotted
area, is constructed by contracting together two original (𝑃) propagators. The insertion of the
current with 3-momentum q between the source and sink nucleons then reduces to that between
the original propagator and the sequential propagator, again shown schematically by the top line.
By momentum conservation, the source nucleon is then projected to momentum p𝑖 = p 𝑓 − q. The
Euclidean 4-momentum transfer squared is given by 𝑄2 = q2 − (𝐸𝑁 − 𝑀𝑁 )2.

In current calculations (the standard method) the nucleon interpolating operator, N , used is

N(𝑥) =𝜖𝑎𝑏𝑐
[
𝑞𝑎𝑇1 (𝑥)𝐶𝛾5

1 ± 𝛾4

2
𝑞𝑏2 (𝑥)

]
𝑞𝑐1 (𝑥) , (1)

where 𝐶 = 𝛾4𝛾2 and the optional factor 1 ± 𝛾4 projects on to positive parity nucleon states
propagating forward/backward in time for zero momentum correlators. Developing a variational
basis of interpolating operators that includes all states making significant contributions, including
𝑁𝜋 states, i.e., the holy grail of taming ESC, is still work under progress [31, 32].

A short description of the six steps in the calculation of the AVFF that are common to all
fermion discretization schemes and independent of the selection of input simulation parameters is
given next in Secs. 2.1–2.6.
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2.1 Correlation functions 𝐶2pt and 𝐶3pt
𝐽

(q; 𝑡, 𝜏)

Two kinds of smeared sources, 𝜂, have been used to generate the original and sequential quark
propagators in most lattice calculations: (i) Wuppertal [33] and (ii) exponential source [25]. The
quark propagators so obtained are stitched together to construct the gauge invariant time-ordered
correlation functions𝐶2pt( 𝒑; 𝜏) and𝐶3pt

𝐽
(𝒒; 𝑡, 𝜏) shown in Fig. 1, whose spectral decompositions are

𝐶2pt( 𝒑; 𝜏) ≡⟨Ω|T (N (𝜏)N (0)) |Ω⟩ =
∑︁
𝑖=0

|𝐴′
𝑖 |2𝑒−𝐸𝑖 𝜏 , (2)

𝐶
3pt
𝐽

(𝒒; 𝑡, 𝜏) ≡⟨Ω|T (N (𝜏)𝐽Γ (𝑡)N (0)) |Ω⟩ =
∑︁
𝑖, 𝑗=0

𝐴′
𝑖𝐴

∗
𝑗 ⟨ 𝑗 |𝐽Γ |𝑖′⟩𝑒−𝐸𝑖 𝑡−𝑀 𝑗 (𝜏−𝑡 ) , (3)

where 𝐽Γ = 𝐴𝜇 = 𝜓𝛾𝜇𝛾5𝜓 or 𝐽Γ = 𝑃 = 𝜓𝛾5𝜓 is the quark bilinear current inserted at time 𝑡 with
momentum 𝒒, and |Ω⟩ is the vacuum state. In the𝐶3pt

𝐽
(𝒒; 𝑡, 𝜏), using the quantum mechanical right to

left time ordering, the nucleon in the final state ⟨ 𝑗 | is, by construction, projected to zero momentum,
i.e., 𝑝 𝑗 = (𝑀, 0), whereas the initial state |𝑖′⟩ is projected onto definite momentum 𝑝𝑖 = (𝐸, 𝒑) with
𝒑 = −𝒒 by momentum conservation. The prime in |𝑖′⟩ indicates that this state can have non-zero
momentum. Consequently, the states on the two sides of the inserted operator 𝐽 are different for all
q ≠ 0. The goal is to extract the ground-state matrix elements (GSME), ⟨0|𝐽 |0′⟩, from fits to Eq. (3).

A major challenge in the analysis of all nucleon correlators is the exponential decay of the signal-
to-noise ratio, i.e., as 𝑒−(𝑀𝑁−1.5𝑀𝜋 )𝜏 with the source-sink separation 𝜏 [34, 35]. With (𝑂 (105) mea-
surements), a good signal in 𝐶2pt( 𝒑; 𝜏) and 𝐶3pt

𝐽
(𝒒; 𝑡, 𝜏) extends to ≈ 2 and ≈ 1.5 fm, respectively.

At these 𝜏, the residual contribution of many theoretically allowed radial and multihadron
excited states are observed to be significant. These states arise because the standard nucleon in-
terpolating operator N , defined in Eq. (1) and used to construct the correlation functions given in
Eqs. (2) and (3), couples to a nucleon and all its excitations with positive parity including multi-
hadron states, the lowest of which are 𝑁 (p)𝜋(−p) with |plowest | = 2𝜋/𝐿𝑎 and 𝑁 (0)𝜋(0)𝜋(0). Since
it is not known, a priori, which excited states contribute significantly to a given 𝐶3pt

𝐽
(𝒒; 𝑡, 𝜏), the

first goal is to develop methods to identify these and remove their contributions. Operationally
this boils down to knowing/determining the energies 𝐸𝑖 to put in fits to data using the theoretically
rigorous (for unitary actions) spectral decomposition given in Eq. (3). Note that the 𝐴𝑖 are not
needed as they come in combinations 𝐴′

𝑖
𝐴∗
𝑗
⟨ 𝑗 |𝐽Γ |𝑖′⟩, which are fit parameters and never used.

2.2 Extracting the ground state matrix elements: exposing and incorporating 𝑁𝜋 states

The most direct way to extract ⟨0|𝐽 |0′⟩ is to make fits to Eq. (3) keeping as many intermediate
states as allowed by data’s precision and demonstrate convergence. The problem is that even
unconstrained 2-state fits are numerically ill-posed. The next option is to take the 𝐸𝑖 from𝐶2pt( 𝒑; 𝜏)
as N creates the same set of states in 𝐶2pt and 𝐶3pt

𝐽
and input these in fits to 𝐶3pt

𝐽
(𝒒; 𝑡, 𝜏), either

by doing simultaneous fits or via priors within say a bootstrap process to correctly propagate the
errors. Of these, the ground state 𝐴′

0, 𝐴0, and 𝐸0 are well-determined from fits to the 2-point
function. Similarly, one would expect 𝐸1 can also be taken from 𝐶2pt. This was the strategy used
until 2017 when it was shown in Ref. [36] that the resulting form factors do not satisfy the constraint
imposed on them by PCAC. Deviations from PCAC due to discretization effects of about ≈ 5%
were expected, however, almost a factor of two was found on the physical pion mass ensembles.
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Figure 2: Data for the ratio𝐶3pt
𝐽

(𝒒, 𝑡, 𝜏)/
√︁
𝐶2pt (𝒒, 𝑡)𝐶2pt (0, 𝜏 − 𝑡) that, in the limits (𝜏− 𝑡) → ∞ and 𝑡 → ∞,

should be independent of 𝜏 and 𝑡, i.e., lie on a horizontal line in the center about 𝑡 = 𝜏/2 with value that is the
GSME. Current data show large ESC, and the grey band is the estimate of GSME given by the fit to Eq. (3).
In each row, the data in each pair of panels are the same but the fit on the left is without the 𝑁𝜋 state and
on the right is with. The top row (panels 1 and 2) show the data and fit to 𝐽 = 𝐴4 with 𝒏 = (0, 0, 1). These
two panels illustrate (i) the improvement (𝜒2/𝑑𝑜 𝑓 ) in the fit to 𝐽 = 𝐴4 data with the inclusion of the 𝑁𝜋
state and (ii) a very large ESC indicated by the large slope slowly rotating counterclockwise to the expected
horizontal band. The right two panels show the data and fits to 𝐽 = 𝑃 with 𝒏 = (1, 0, 0) that should give 𝐺𝑃 .
These two panels illustrate that the difference in 𝐺𝑃 with and without including the 𝑁𝜋 state is about 50%
(enhanced ESC) and the 𝜒2/𝑑𝑜 𝑓 is better with the 𝑁𝜋 state. Panels in rows two and three show the data and
fit to 𝐽 = 𝐴3 with 𝒏 = (1, 0, 0), (2, 0, 0), (2, 1, 0), (3, 1, 0) that should give 𝐺𝐴 for 𝜏 → ∞. Each pair of
panels illustrates that the difference in 𝐺𝐴 with and without including the 𝑁𝜋 state is a few percent and the
𝜒2/𝑑𝑜 𝑓 of the two fits is comparable. Note the change in the behavior: the 𝒏 = (1, 0, 0) data converge from
below, while for (1,1,1) and higher momenta, the data are rotating clockwise to the expected horizontal line.
Also, the fits become less robust with increasing 𝒏. See Ref. [27] for details on these data and the fits.

The reason was provided by Bär [37, 38] using 𝜒PT: enhanced contributions to ME from
multihadron, 𝑁𝜋 , . . ., excited states that have much smaller mass gaps than of radial excitations,
the lowest being ≈ 1230 versus N(1440). These states were not evident in fits to 𝐶2pt( 𝒑; 𝜏) as they
have small amplitudes. A different approach to analysis that includes the 𝑁𝜋 states was needed.

It turned out that 2-state fits to𝐶3pt
𝐴4

exposed these states and provided a data-driven method [39].
These fits confirmed that the lowest of the tower of 𝑁 (p)𝜋(−p) states makes a very significant con-
tribution. By itself, 𝐶3pt

𝐴4
is dominated by excited states and fits to it using the 𝐸𝑖 from 𝐶2pt gave

very poor 𝜒2/𝑑𝑜 𝑓 . Making fits leaving 𝐸1 a free parameter dramatically improved the 𝜒2/𝑑𝑜 𝑓
(compare the left two panels in the top row of Fig. 2), and the resulting output values of 𝐸1 on the
p = 0 (p) side of operator insertion were roughly consistent with 𝑁 (p = 1)𝜋(p = −1) (𝑁 (0)𝜋(p))
as shown in Fig. 3 (left), reproduced from Ref. [39]. An illustration of the current understanding of
the process giving GSME and of those involving the lowest excited states contributing is shown in
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Figure 3: (Left) Results for the energy gaps, labeledΔ𝐸𝐴4
1 andΔ𝑀𝐴4

1 , for the first excited state extracted from
fits to the 𝐶𝐴4 correlator. These mass gaps are compared with the first excited state energy Δ𝐸

2pt
1 from four-

state fits to the nucleon two-point correlator. Note that the difference between them (black circles versus blue
triangles), and consequently the difference between the form factors extracted increases as 𝑀𝜋 → 135 MeV
and 𝒏2 → 0 (equivalently 𝑄2 → 0). (Right) The 1-loop correction to the 3-point function in 𝜒PT.

Figure 4: The quark line diagrams illustrating the contribution of 𝑁𝜋 states. (Left) the current 𝐴𝜇 annihilates
the pion produced by the source. (Right) The states involved in the transitions: the ground state process is
shown above the quark line diagram and those involving an excited state on one side of the current insertion
are shown below.

Fig. 4 (right). The caption of Fig. 2 points out some of the features of ESC observed in current data
and the efficacy of fits to 𝐶3pt

𝐽
with and without including the lowest 𝑁𝜋 state to remove the ESC.

The fact that there is enhancement of ME in the axial channel has been understood for over
60 years as the “pion pole dominance” (PPD) hypothesis. On the lattice, the creation of a 𝑁𝜋
state by N is suppressed by 𝑉 , the 3-d volume, compared to just the nucleon as each state has a
normalization factor of 1/𝑉 for a point (local) source N . The axial current can, however, couple to
this pion, and because the pion is light, this coupling can occur anywhere in the time slice at which
the current is inserted with momentum 𝒒 (see Fig. 4 (left)). This gives a factor of 𝑉 enhancement,
approximately cancelling the normalization factor 1/𝑉 [37, 38]. This enhanced contribution to the
ME when the pion comes on-shell is an artifact that has to be removed. Note that since energy
is not conserved on the lattice, both the neutron and the pion can come on shell, however, since
momentum is conserved, possible excited states must have the same total momentum as the created
neutron state. PPD tells us that the axial current with momentum 𝒒 can be viewed as the insertion of
a pion with 𝒒, and this has a large coupling to the nucleon. These processes are illustrated in Fig. 4.

Having identified large contributions from the 𝑁 (p = 1)𝜋(p = −1) state, certainly in the
extraction of 𝐺𝑃 and 𝐺𝑃, the question is—do we need to include other multihadron and radial
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excited state contributions if we want results with percent level precision? What about in𝐺𝐴? Note
that, in addition to the enhanced contribution shown in Fig. 4, 𝜒PT also indicates that the 1-loop
contributions due to the diagram shown in Fig. 3 (right) (again a 𝑁𝜋 contribution) could be 𝑂 (5%)
in all the five 𝐶3pt

𝐽
. Thus the 𝑁𝜋 state could also be significant for extracting 𝐺𝐴 and the charge 𝑔𝐴

(the GSME ⟨0|𝐴3 |0′⟩) from 𝐶𝐴3 at the percent precision desired. Based on these arguments, it is
clear that one needs at least 3-state fits to the five 𝐶3pt

𝐽
in Eq. (3)—the ground state, the 𝑁𝜋 state

and the third that effectively accounts for all other excited state contributions.

In my evaluation, details of the fits made to remove ESC are the most significant differences
between the calculations performed by the different collaborations. With the current methodology,
higher statistics data are badly needed to improve these fits, i.e., include more states in the fits, and
gradually reduce the dependence on exactly how the analyses are done.

A very important point to remember in such analyses is that fit parameters in a truncated ansatz
(the 𝐴𝑖 and 𝐸𝑖 in say a 3-state fit in our case) try to incorporate the effects of all contributions. Thus
the connection between parameters coming out of fits to a truncated Eq. (3) and physical states
made in Figs. 3 and 4 is very approximate at best. Thus, when I write “𝑁𝜋 state” I really only
mean an 𝐸1 close to that of a non-interacting 𝑁 (1)𝜋(−1) state and/or an 𝑁 (0)𝜋(0)𝜋(0) state that
is essentially degenerate on our lattices.

2.3 Extracting the form factors

Once the GSME, ⟨0|𝐽 |0′⟩, have been extracted, their Lorentz covariant decomposition into the
axial 𝐺𝐴, induced pseudoscalar 𝐺𝑃, and pseudoscalar 𝐺𝑃 form factors is

⟨𝑁 ( 𝒑 𝑓 ) |𝐴𝜇 (𝒒) |𝑁 ( 𝒑𝑖)⟩ = 𝑢( 𝒑 𝑓 )
[
𝐺𝐴(𝑄2)𝛾𝜇𝛾5 + 𝑞𝜇𝛾5

𝐺𝑃 (𝑄2)
2𝑀

]
𝑢( 𝒑𝑖) , (4)

⟨𝑁 ( 𝒑 𝑓 ) |𝑃(𝒒) |𝑁 ( 𝒑𝑖)⟩ = 𝑢( 𝒑 𝑓 )
[
𝐺𝑃 (𝑄2)𝛾5

]
𝑢( 𝒑𝑖) , (5)

where 𝑢( 𝒑) is the nucleon spinor with momentum 𝒑, 𝑞 = 𝑝 𝑓 − 𝑝𝑖 is the momentum transferred
by the current, 𝑄2 = −𝑞2 = 𝒒2 − (𝐸 ( 𝒑 𝑓 ) − 𝐸 ( 𝒑𝑖))2 is the space-like four momentum squared
transferred. On the lattice, the discrete momenta are 𝒑 = 2𝜋𝒏/𝐿𝑎 = 2𝜋(𝑛𝑥 , 𝑛𝑦 , 𝑛𝑧)/𝐿𝑎 with
𝑛𝑖 ∈ ±{0 . . . 𝐿}. The spinor normalization used is∑︁

𝑠

𝑢( 𝒑, 𝑠)𝑢( 𝒑, 𝑠) = 𝐸 ( 𝒑)𝛾4 − 𝑖𝛾 · 𝒑 + 𝑀
2𝐸 ( 𝒑) . (6)

It is important to note that the excited states have to be removed from the correlation functions,𝐶,
which have the spectral decomposition given in Eq. (3), and not from the form factors, i.e., after the
decompositions. Eqs. (4) and (5) are only valid for GSME, i.e., |𝑁 ( 𝒑𝑖)⟩ and ⟨𝑁 ( 𝒑 𝑓 ) | are assumed
to be ground states of the nucleon. If there are residual ESC, then additional “transition” form
factors have to be included in the rhs of Eqs. (4) and (5).

Assuming GSME have been extracted, and choosing the nucleon spin projection to be in the

8



P
o
S
(
L
A
T
T
I
C
E
2
0
2
3
)
1
2
4

Axial vector form factors Rajan Gupta

“3” direction, the explicit form of the decompositions in Eqs. (4) and (5) become

𝐶𝐴{1,2} (𝒒) →𝐾−1

[
−𝑞{1,2}𝑞3

𝐺𝑃

2𝑀

]
, (7)

𝐶𝐴3 (𝒒) →𝐾−1

[
−𝑞2

3
𝐺𝑃

2𝑀
+ (𝑀 + 𝐸)𝐺𝐴

]
, (8)

𝐶𝐴4 (𝒒) →𝐾−1𝑞3

[
(𝑀 − 𝐸)𝐺𝑃

2𝑀
+ 𝐺𝐴

]
, (9)

𝐶𝑃 (𝒒) →𝐾−1𝑞3𝐺𝑃 , (10)

where the kinematic factor 𝐾 ≡
√︁

2𝐸 (𝐸 + 𝑀). In each case, data with all equivalent momenta that
have the same 𝒒2 are averaged to improve the statistical signal. These correlation functions are
complex valued, and the signal, for the CP symmetric theory, is in Im𝐶𝐴𝑖

, Re𝐶𝐴4 , and Re𝐶𝑃.
It is clear that 𝐺𝑃 is determined uniquely from 𝐶𝑃 (Eq. (10)), and for certain momenta 𝐺𝑃

from 𝐶𝐴{1,2} using Eq. (7). The 𝐶𝐴3 (𝒒) and 𝐶𝐴4 (𝒒) give linear combinations of 𝐺𝐴 and 𝐺𝑃, and
Eq. (8) gives only 𝐺𝐴 when 𝑞3 = 0.

2.4 Satisfying PCAC

The non-singlet PCAC relation between bare axial, 𝐴𝜇 (𝑥), and pseudoscalar, 𝑃(𝑥), currents is:

𝜕𝜇𝐴𝜇 = 2𝑚𝑃 , (11)

where the quark mass parameter 𝑚 ≡ 𝑍𝑚𝑚𝑢𝑑𝑍𝑃𝑍
−1
𝐴

includes all the renormalization factors, and
𝑚𝑢𝑑 = (𝑚𝑢 + 𝑚𝑑)/2 = 𝑚𝑙 is the light quark mass in the isospin symmetric limit. Using the
decomposition in Eqs. (4) and (5) of GSME, the PCAC relation requires that the three form factors
𝐺𝐴, 𝐺𝑃, and 𝐺𝑃 must satisfy, up to discretization errors, the relation

2𝑀𝑁𝐺𝐴(𝑄2) − 𝑄2

2𝑀𝑁

𝐺𝑃 (𝑄2) = 2𝑚𝐺𝑃 (𝑄2) , (12)

on each ensemble. All pre Ref. [36] calculations did not check this relation and missed observing that
the data showed large deviations. Calculations subsequent to Ref. [39] that include the lowest mass
gap state, 𝑁 (p = 1)𝜋(p = −1), in the analysis, obtain form factors that satisfy PCAC to within≈ 10%
already at lattice spacing of 𝑎 ≈ 0.9 fm. (The ETMC result is an exception as explained in Ref. [23]).
An illustration of the size of the deviation from unity of 𝑅1+𝑅2 ≡ 2�̂�𝐺𝑃 (𝑄2 )

𝑀𝑁𝐺𝐴 (𝑄2 ) +
𝑄2𝐺𝑃 (𝑄2 )

4𝑀2
𝑁
𝐺)𝐴 (𝑄2 ) , without

and with the lowest 𝑁𝜋 state included is shown in Fig. 5 taken from Ref. [19].
To summarize, satisfying the PCAC relation in Eq. (12) provides a strong and necessary

constraint on the extraction of the three axial form factors. 𝜒PT analysis by Bär [37, 38] and data
driven validation in Ref. [29, 31, 39] show that the lowest, 𝑁 (p = 1)𝜋(p = −1) and 𝑁 (p = 0)𝜋(p =

1), states makes a large contribution on the two sides, respectively, and need to be included in the
analysis. For percent level precision, the next question is—what other states need to be included?
Current analyses include up to three states, where the third state, if its parameters are left free,
effectively tries to account for all residual ESC. Such fits have been implemented in different ways.
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Figure 5: (Left) Results for 𝑅1 + 𝑅2 on 10 ensembles from fits to 𝐶3pt
𝐽

without including the 𝑁𝜋 state, i.e.,
the spectrum taken from fits to 𝐶2pt. (Right) Including the 𝑁𝜋 state. For PCAC to be satisfied, 𝑅1 + 𝑅2
should be unity up to discretization errors. The dotted lines show the 5% deviation band.

For example, in Ref. [29], the 𝑁𝜋 state is hardwired and the third state is taken to be the lowest
excited state in fits to 𝐶2pt. In Refs. [19, 27, 39], a simultaneous fit to all five 𝐽 = 𝐴𝜇 and 𝑃
correlators is made wherein the 𝐴4 correlator fixes 𝐸1 to approximately the non-interacting energy
of the 𝑁𝜋 state. Over time, with much higher statistics data, results from different collaborations
using different methods should converge as more more excited states are included.
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Figure 6: (Left) Comparison of the nucleon axial-vector form factor 𝐺𝐴

(
𝑄2) as a function of 𝑄2, the

momentum transfer squared, obtained by the PNDME 23 [19] shown by the turquoise band; RQCD 19 [29]
(light faun band); ETMC 21 [23] (faun band); NME 22 [27] (light brown band); and Mainz 22 [26] (brown
band). The 𝜈D band is the fit to the old neutrino-deuterium data taken from Ref. [20].

2.5 Extrapolating lattice AVFF to the physical point for use in phenomenology

The next step, once ESC have been removed and form factors have been extracted from GSME
on each ensemble, is to extrapolate these data to the physical point and provide a parameterized
form for 𝐺𝐴 and 𝐺𝑃 that can be used in phenomenology. The challenge is that the discrete set of
𝑄2

𝑖
values at which data are obtained are different on each ensemble.
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One, simple to implement, way consists of the following three steps:

1. Parameterize the 𝐺𝐴(𝑄2
𝑖
) data on each ensemble. Depending on the number of 𝑄2

𝑖
values, it

could be a suitably truncated 𝑧-expansion or a Padé. The expected 1/𝑄4 asymptotic behavior
can be built in by using sum rules in the 𝑧-expansion [40] or through an {𝑛, 𝑛 + 2} Padé in
𝑄2/𝑀2

𝑁
. The Mainz collaboration [26] combines the removal of ESC at various values of

𝑄2
𝑖

and the 𝑄2 parameterization on a given ensemble to include correlations.

2. Pick 𝑛 values of momenta, 𝑄2
𝑘
, over a range, say 0 ≤ 𝑄2 ≤ 1 GeV2. Extrapolate the data at

each of these values of 𝑄2
𝑘

using a simultaneous fit in {𝑚𝑞, 𝑎, 𝑀𝜋𝐿} to the physical point. A
typical ansatz used for such chiral-continuum-finite-volume (CCFV) extrapolations is

𝑔(𝑀𝜋 , 𝑎, 𝑀𝜋𝐿) = 𝑔0 + 𝑐1𝑎 + 𝑐2𝑀
2
𝜋 + 𝑐3𝑀

2
𝜋 exp (−𝑀𝜋𝐿)√
𝑀𝜋𝐿

, (13)

where I have kept only the lowest order corrections in each of the {𝑚𝑞, 𝑎, 𝑀𝜋𝐿} variables
and assumed that discretization errors start at 𝑂 (𝑎).

3. Having obtained the form factor in the continuum limit at the 𝑛 points, 𝑄2
𝑘
, carry out the final

parameterization, using again a truncated 𝑧-expansion or a Padé.

This 3-step process can be done within a single bootstrap procedure to propagate errors as has been
done in Ref. [19, 27] to produce the NME and PNDME results shown in Fig. 6. Or these steps
can be combined, especially if there are correlations between them. For example, to account for
correlations between the coefficients of the CCFV fits at different values of 𝑄2

𝑘
in step 2.

The plots in Fig. 6 provide two comparisons. In panels on the left, physical point results from
the RQCD [24, 29], ETMC [23], NME [27], and Mainz [26] collaborations are compared against
those from PNDME [19]. On the right they are overlaid and compared to the phenomenological
extraction from the old neutrino-deuterium bubble chamber data [20]. The PNDME, RQCD and
NME data mostly overlap, whereas the ETMC and Mainz data overlap and fall off slightly slower
for 𝑄2 ≳ 0.3 GeV2. On the other hand, the neutrino-deuterium (𝜈D) data [20] falls off much faster
for𝑄2 ≳ 0.2 GeV2. Overall, as shown in the right plot, the five lattice QCD estimates are consistent
within 1𝜎 and lie about 2𝜎 above the 𝜈D band for 𝑄2 ≳ 0.3 GeV2.

There also are results from CalLAT [16, 41], PACS [25, 42], and LHP+RBC+UKQCD [43]
collaborations, which have not been included in the comparison because they have not been extrap-
olated to the physical point. The Fermilab collaboration [32] has embarked on the much harder
problem of calculating transition matrix elements as well, e.g., 𝑁 → Δ or 𝑁 → 𝑁𝜋.

From the analysis of the NME and PNDME data, my understanding is that the differences in
exactly how the ESC are handled by the various collaborations and the consequent uncertainty in
the final results should be considered work in progress. The uncertainty from the differences in
the overall procedure for parameterization and CCFV extrapolation is, I believe, smaller because
the data do not show large dependence on any of the three parameters {𝑚𝑞, 𝑎, 𝑀𝜋𝐿}, especially
for 𝑎 ≲ 0.1 fm and 𝑀𝜋𝐿 ≳ 4, as illustrated in Fig. 7 [19, 27]. Hopefully, the next generation
calculations will shed light on, and possibly resolve, the various differences.

Other findings in Refs. [19, 27] are (i) the dipole ansatz 𝐺𝐴(𝑄2) = 𝑔𝐴

(1+𝑐𝑄2/𝑀2
𝑁
)2 gives poor fits

(very low 𝑝 values) to data on many ensembles. Our conclusion, therefore, is that the lattice data
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Figure 8: (Left) Comparison of the parameterized nucleon axial-vector form factor 𝐺𝐴(𝑄2) versus𝑄2 up to
2 GeV2 obtained from (i) fit to the deuterium bubble-chamber data [20] shown by blue solid lines with error
band; (ii) fit to recent MINERvA antineutrino-hydrogen data [17], shown by black dashed lines and turquoise
error band; and (iii) lattice QCD result obtained by the PNDME Collaboration [19] shown by red solid lines
without a band. (Right) A comparison of antineutrino-nucleon charged current elastic differential cross
section using AFF from (i) lattice QCD by the PNDME collaboration [19] (red bands) and (ii) the deuterium
bubble-chamber data [20] (black bands) with the MINERvA antineutrino-hydrogen data [17] (black circles).
These figures are taken from Ref. [18].

already show that the dipole ansatz does not have enough parameters to capture the 𝑄2 behavior
over the range 0 ≤ 𝑄2 ≤ 1 GeV2. (ii) The PPD relation between 𝐺𝐴 and 𝐺𝑃 works very well.

2.6 Consistency check in the extraction of the axial charge 𝑔𝑢−𝑑
𝐴

There are two ways in which one can extract the axial charge 𝑔𝑢−𝑑
𝐴

. The first is from the forward
matrix element using 𝐶𝐴3 in Eq. (8) with 𝒒 = 0 and the second is by extrapolating the form factor
𝐺𝐴(𝑄2 ≠ 0) to 𝑄2 = 0. I am considering them as separate because the extraction from the forward
matrix element is computationally clean: 𝐶𝐴3 (𝒒 = 0) has the smallest errors and verification of the
symmetry of the data about 𝜏/2 is a good test. The errors grow with 𝒒 as shown in Fig. 2. On the other
hand, 𝐺𝐴(𝑄2) is constrained by being part of the PCAC relation, Eq. (12), that has to be satisfied.
The two results must agree after CCFV extrapolation. Based on the data in Ref. [19], I conclude

• The difference between 𝑔𝑢−𝑑
𝐴

extracted without and with including 𝑁𝜋 states is 𝑂 (≈ 6%),
i.e., 1.218(39) → 1.294(48) on including one (the lowest) 𝑁𝜋 state in the analysis. Note
that the errors in each result are 𝑂 (≈ 3%).
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• The difference between 𝑔𝑢−𝑑
𝐴

≡ 𝐺𝐴(𝑄2 → 0) extracted by extrapolating 𝐺𝐴(𝑄2) data
obtained without and with including the lowest 𝑁𝜋 state is also 𝑂 (≈ 6%), i.e., 1.213(39) →
1.289(56). Again, the errors in each are 𝑂 (≈ 4%).

Thus, for each of the two cases, without and with 𝑁𝜋 states, we get consistent estimates for 𝑔𝑢−𝑑
𝐴

from the two methods, however results including the 𝑁𝜋 state are about 6% larger. This difference
is consistent with the expected ∼ 5% 1-loop correction to the charge in 𝜒PT, however, it is roughly
one combined 𝜎. It therefore needs validation. My pick for the final result is the analysis including
the 𝑁𝜋 state since it gives form factors that satisfy the PCAC relation. Higher precision data are
needed to further clarify the other significant ESCs and how to include them.

Collaboration 𝑔𝑢−𝑑
𝐴

⟨𝑟2
𝐴
⟩ fm2 𝑔∗

𝑃
𝑔𝜋𝑁𝑁

PNDME 23 1.292(53)(24) 0.439(56)(34) 9.03(47)(42) 14.14(81)(85)
RQCD 19/23 1.28428

27 0.449(88) 8.68(45) 12.93(80)
ETMC 23 1.283(22) 0.339(46)(6) 8.99(39)(49) 13.25(67)(69)
PACS 23 1.264(14)(1) 0.316(67)
Mainz 22 1.225(39)(25) 0.370(63)(16)
NME 21 1.32(6)(5) 0.428(53)(30) 7.9(7)(9) 12.4(1.2)
CalLat 18 1.271(10)(7)

PNDME 18 1.218(25)(30)
Mainz 19 1.242(25)(0

−30)
𝜒QCD 18 1.254(16)(30)

Table 1: Comparison of 𝑔𝐴, ⟨𝑟2
𝐴
⟩, 𝑔∗

𝑃
and 𝑔𝜋𝑁𝑁 from recent calculations: PNDME 23 [19], RQCD

19/23 [24, 29], ETMC 23 [28], PACS 23 [25, 42], Mainz 22 [26], and NME 21 [27]. Lattice results for all
charges are usually quoted in the MS scheme at scale 2 GeV, however, note that the renormalization of 𝑔𝑢−𝑑

𝐴

is trivial [21]. Earlier results for 𝑔𝑢−𝑑
𝐴

with 2+1+1-flavor simulations by CalLat 18 [44] and PNDME 18 [45],
and with 2+1-flavor simulations by Mainz 19 [46] and 𝜒QCD 18 [47] that entered in the averages compiled
in the FLAG report 2021 [21] are given below the dividing line.

3. Comparison of charges obtained by various lattice collaborations

The results for the axial charge, 𝑔𝑢−𝑑
𝐴

, the charge radius squared, ⟨𝑟2
𝐴
⟩, the induced pseu-

doscalar coupling 𝑔∗
𝑃

, and the pion-nucleon coupling 𝑔𝜋𝑁𝑁 , extracted from𝐺𝐴 and𝐺𝑃 by various
collaborations using the relations

𝐺𝐴(𝑄2) = 𝑔𝐴(1 −
⟨𝑟2

𝐴
⟩

6
𝑄2 + · · · ) , (14)

𝑔∗𝑃 ≡
𝑚𝜇

2𝑀𝑁

𝐺𝑃 (𝑄∗2) , (15)

𝑔𝜋𝑁𝑁 ≡ lim
𝑄2→−𝑀2

𝜋

𝑀2
𝜋 +𝑄2

4𝑀𝑁𝐹𝜋

𝐺𝑃 (𝑄2) . (16)

are summarized in Table 1. Here 𝑚𝜇 is the muon mass and 𝑄∗2 = 0.88𝑚2
𝜇 is the energy scale of

muon capture, and 𝐹𝜋 = 92.9 MeV is the pion decay constant.
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The results show about 10% variation in 𝑔𝑢−𝑑
𝐴

, 𝑔∗
𝑃

, and 𝑔𝜋𝑁𝑁 and about 25% in ⟨𝑟2
𝐴
⟩. Part

of this is likely due to different methodologies used in the analysis, in particular how and if the
lowest 𝑁𝜋 state is included in the analysis. These results will improve steadily over time with higher
statistics data.

4. Comparison of differential cross-section using lattice AVFF with MINER𝜈A data

A comparison of the antineutrino-nucleon charged-current elastic cross sections calculated us-
ing predictions of AVFF from lattice (PNDME 23 [19]) and neutrino-deuterium analysis [20] with
MINERvA measurement [17, 48] is presented in Fig. 8 reproduced from Ref. [18]. A 𝜒2 test was
performed to determine the significance of the differences between the three. No significant dif-
ference was found between MINERvA-lattice QCD (PNDME) and between MINERvA-deuterium
results. A ≈ 2.5𝜎 tension was, however, found between the PNDME and the deuterium results.
Based on data shown in Fig. 6, the deviation in the deuterium-Mainz and deuterium-ETMC will be
even larger. To assess the scope for future progress, three regions of 𝑄2 with different prospects for
the extraction of AVFF from lattice QCD and MINERvA-like experiments were identified.

For 𝑄2 ≲ 0.2 GeV2, LQCD predictions and fits to the deuterium bubble-chamber data are
in good agreement. In this region, the experimental errors in the measurement on hydrogen by
MINERvA are large, whereas the errors in the parameterization of the deuterium bubble chamber
data are smaller. The 𝜈D result has often been used as a benchmark, however, note that there is
unresolved uncertainty in the deuterium data as discussed in Ref. [20]. Also, no new deuterium data
are expected in the near-term, so I do not comment on its future prospects. Lattice QCD data are
competitive and will improve steadily. This region will be well-characterized by the axial charge,
the axial charge radius, and well-parameterized by a low-order 𝑧-expansion or a Padé.

For 0.2 GeV2 ≲ 𝑄2 ≲ 1 GeV2, the AVFF from PNDME has the smallest errors and the
predicted differential cross section lies above the hydrogen and 𝜈D values, i.e., the same ordering
as for the AVFF shown in Fig. 8 (left). Future improvements in both the hydrogen data and lattice
calculations will provide robust cross-checks in this region.

The region 𝑄2 ≲ 0.5 GeV2 is where lattice QCD data, even with current methodology, will
improve rapidly as more simulations are done closer to 𝑀𝜋 = 135 MeV, 𝑎 → 0 and on larger
volumes because, in these limits and for given statistics, the value of 𝑄2 |max with a good signal
(usually taken to be some fixed lattice momentum n2) decreases.

For𝑄2 ≳ 1 GeV2, current LQCD data have larger statistical errors and systematic uncertainties—
discretization and residual excited state contributions. With the current methodology, the lattice
AVFF comes mostly from simulations with 𝑀𝜋 ≳ 300 MeV on 𝑎 < 0.1 fm ensembles [19]. If
the dependence on {𝑎, 𝑀𝜋} is mild, as has been observed so far, then these data are useful by
themselves. With higher statistics and improved actions, one can push the lattice momenta 𝒏2 |max

higher and perhaps reliably reach 𝑄2 ∼ 2 GeV2. Nevertheless, new methods are definitely needed
to get data at 𝑄2 ≳ 2 GeV2 from simulations with physical pion masses, 𝑀𝜋 ≈ 135 MeV and
𝑎 < 0.1 fm. Similarly, improvements in MINERvA and follow on experiments are needed to cover
the full range of 𝑄2 relevant for DUNE.
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5. Concluding remarks

Extensive calculations of the AVFF are being carried out by at least the following nine lat-
tice QCD collaborations: PNDME [19], RQCD [24, 29], ETMC [23], NME [27], Mainz [26],
CalLAT [16, 41], PACS [25, 42], LHP+RBC+UKQCD [43], and Fermilab [32]. As shown in
Sections 3 and 2.5, we now have results to within 10% precision. The major uncertainty comes
from resolving and removing excited-state contributions.

The good news is that the methodology for the calculation of the correlation functions,𝐶2pt and
𝐶

3pt
𝐽

, is robust. The bad news is that the exponentially falling signal to noise ratio in them means that
ESC are large at source-sink separations possible in today’s calculations. Second, it is also clear that
multihadron, 𝑁𝜋, excited states give large contributions which must be removed. Unfortunately,
it is not yet known how many of these states need to be included in the analysis for percent level
precision. The operator constraint that the form factors satisfy the PCAC relation in Eq. (12) provides
a valuable check, so it must be carried out in all calculations. The third challenge is getting data at
large 𝑄2 because the discretization and statistical errors grow with 𝑄2 on a given ensemble. Also,
the𝑄2 |max (the largest lattice momenta 2𝜋𝒏/𝐿𝑎 with a good signal to noise ratio for fixed statistics)
decreases as simulations are done closer to the physical point. Thus, to get data for 𝑄2 ≳ 1 GeV2

on physical pion mass ensembles will need/benefit from new methods and very high statistics.
As first step towards percent level precision, my estimate is that a factor of ten increase in

statistics will reduce the statistical errors to a level that will provide much more clarity in removing
ESC. Similary new developments, including variational methods [31] with multihadron states and
momentum smearing [49], will improve the calculations and extend the range of 𝑄2. I anticipate
continued improvements in both, statistics and methods, will provide LQCD predictions of AVFF
for nucleons in the range 𝑄2 ≲ 2 GeV2 (hopefully higher) with percent level precision by about
2030, in concert with DUNE producing data.
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