Fixed point actions from convolutional neural networks
U. Wenger*, K. Holland, A. Ipp and D.I. Müller
Pre-published on:
December 27, 2023
Published on:
November 06, 2024
Abstract
Lattice gauge-equivariant convolutional neural networks (L-CNNs) can be used to form arbitrarily shaped Wilson loops and can approximate any gauge-covariant or gauge-invariant function on the lattice. Here we use L-CNNs to describe fixed point (FP) actions which are based on renormalization group transformations. FP actions are classically perfect, i.e., they have no lattice artifacts on classical gauge-field configurations satisfying the equations of motion, and therefore possess scale invariant instanton solutions. FP actions are tree–level Symanzik–improved to all orders in the lattice spacing and can produce physical predictions with very small lattice artifacts even on coarse lattices. We find that L-CNNs are much more accurate at parametrizing the FP action compared to older approaches. They may therefore provide a way to circumvent critical slowing down and topological freezing towards the continuum limit.
DOI: https://doi.org/10.22323/1.453.0038
How to cite
Metadata are provided both in "article" format (very similar to INSPIRE) as this helps creating
very compact bibliographies which can be beneficial to authors and
readers, and in "proceeding" format
which is more detailed and complete.