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1. Introduction

Numerical lattice quantum chromodynamics (QCD) is an integral part of the modern particle
and nuclear theory toolkit [1–9]. In this framework, the discretized path integral is computed using
Monte Carlo methods. Computationally, this is very expensive, and grows more so as physical limits
of interest are approached [10–12]. Consequently, algorithmic developments are an important driver
of progress. For example, resolving topological freezing [12–14]—an issue that arises in sampling
gauge field configurations with state-of-the-art Markov chain Monte Carlo (MCMC) algorithms
like heatbath [15–19] or Hybrid/Hamiltonian Monte Carlo (HMC) [20–22]—would provide access
to finer lattice spacings than presently affordable. To such ends, recent work has explored how
emerging machine learning (ML) techniques may be applied to lattice QCD [23, 24]. Of particular
interest has been the possibility of accelerating gauge-field sampling [25–34] using normalizing
flows [35–37], a class of generative statistical models with tractable density functions.

In this framework, a flow 𝑓 is a learned, invertible (diffeomorphic) map between gauge fields.
Abstractly, flows may be thought of as bridges between different distributions over gauge fields
(or, equivalently, different theories or choices of action parameters). When applied to samples 𝑉
from some chosen base distribution 𝑟 (𝑉) as𝑈 = 𝑓 (𝑉), the flow induces a model distribution 𝑞(𝑈),
whose density may be computed exactly as

𝑞(𝑈) = 𝑟 (𝑉) / 𝐽 𝑓 (𝑉) , (1)

where 𝐽 𝑓 (𝑉) = | det 𝜕 𝑓 (𝑉)/𝜕𝑉 | is the Jacobian determinant of the flow transformation. The flow
is an exact bridge between the base and model distributions: ensembles distributed per 𝑟 may
be transformed to ensembles distributed per 𝑞 and vice versa. However, the form of the model
distribution is a complicated function of the architecture and precise parameter values of the learned
flow and does not typically correspond to a distribution of physical interest.

Instead, for sampling applications, one typically variationally optimizes the flow so that 𝑞
approximates some target density of interest 𝑝. In this case, the flow serves as an approximate bridge
between the base 𝑟 and target 𝑝. Because the density of 𝑞 can be evaluated, this approximation
can be corrected to obtain exact results for 𝑝. Samples drawn from 𝑟 and flowed are samples from
𝑞, which can be used to compute reweighted expectations under the target as ⟨𝑂⟩𝑝 = ⟨𝑝𝑂/𝑞⟩𝑞 or
used as proposals in independence Metropolis to construct a 𝑝-distributed Markov chain [38–42].

Most demonstrations thus far have been in the context of the simplest application of such an
approximate bridge: full generative modeling or “(approximate) direct sampling”. In this case, the
flow bridges between a Haar uniform base 𝑟 (𝑈) = 1 and the target theory of interest 𝑝, specified
in terms of an action as 𝑝(𝑈) ∝ exp[−𝑆𝑝 (𝑈)]. If achieved for QCD at scale, this would offer
significant advantages over the present state of the art, including embarrassingly parallel sampling
and a natural resolution of topological freezing [24]. However, this requires higher-quality models
than presently available.

This raises an important question: how can presently available flows be used to improve lattice
QCD? The key idea is that we are free to use a flow to bridge between any 𝑟 and 𝑝 of our choosing.
Neither distribution need be trivial, and choosing more similar distributions makes for a substantially
easier modeling task. In this Proceedings, we explore two promising applications following this idea.
After detailing our numerical setup in Sec. 2, we provide preliminary numerical demonstrations in
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Secs. 3 and 4 of how flows may accelerate sampling of QCD field configurations using the parallel
tempering / replica exchange algorithm. The first in Sec. 3 uses flows to bridge nearby physical
theories to accelerate sampling in all of them. The second in Sec. 4 uses flows to repair unphysical
action defects introduced to accelerate topological mixing. A recent publication, Ref. [43], presents a
related but distinct application: flows can be employed to generate correlated ensembles for multiple
different target theories, enabling correlated noise cancellation in computations of derivatives with
respect to lattice action parameters.1

2. Numerical setup

For the two numerical demonstrations below we consider pure-gauge SU(3) defined with the
Wilson gauge action [44],

𝑆𝑔 (𝑈) = − 𝛽

𝑁𝑐

∑︁
𝑥

∑︁
𝜇<𝜈

Re Tr 𝑃𝜇𝜈 (𝑥) , (2)

where 𝑃𝜇𝜈 (𝑥) is the plaquette with extent in the 𝜇 and 𝜈 directions. We emphasize that flowed ap-
proaches to fermions and the fermion determinant have already been explored [30, 32, 45], including
in QCD [33]. These methods may be applied to generalize everything presented here to QCD. The
choice to test in pure gauge theory is made only for simplicity and to reduce experimentation costs.

In both demonstrations, the objective is to use flows to improve topological mixing in sampling
of pure-gauge targets. The baseline to be improved upon is alternating hits of (pseudo)heatbath
(HB) and (pseudo)overrelaxation (OR), denoted as HB+OR [15–19]. We compute topological
charges using the clover definition at Wilson flow time 𝑡/𝑎2 = 2 [46–49].

MCMC sampling efficiency is typically assessed using the integrated autocorrelation time. For
some observable 𝑂, it is defined in terms of the autocorrelation function, 𝐶𝑂 (𝛿𝑡) = ⟨𝑂 (𝛿𝑡)𝑂 (0)⟩ −
⟨𝑂 (𝛿𝑡)⟩ ⟨𝑂 (0)⟩, where equilibration is assumed and the expectations are over all possible Markov
chains, as

𝜏int(𝑂) = 1
2
+

∞∑︁
𝛿𝑡=1

𝐶𝑂 (𝛿𝑡) . (3)

In practice, the sum must be truncated at some 𝑡max < ∞ due to noise in 𝐶𝑂 estimates at large 𝛿𝑡.
Autocorrelations increase the variance of estimators of 𝑂 by a factor of 2𝜏int(𝑂) versus independent
samples with the minimal 𝜏int = 1/2 [50]. Thus, computational cost is linear in 𝜏int.

The model architectures used in both demonstrations are variations on the residual flows [34]
used in Ref. [43]. This “coupling layer” architecture uses variable partitioning to guarantee invert-
ibility and a tractable Jacobian [36, 51]. Schematically, each layer updates a subset of “active links”
conditioned on the other “frozen” ones by applying a step of gradient flow with respect to a learned
potential (cf. the Wilson gauge action in Wilson flow). In each layer, active links are chosen as
those in one direction and for one checkerboard parity over sites. The models here have 16 layers
such that each link in the lattice is updated exactly twice. Our learned potential is parametrized
by applying a learned equivariant smearing to the frozen link field, then summing over plaquettes

1Preliminary results for this strategy were presented in the talk corresponding to this Proceedings.
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each constructed out of one active link and a frozen smeared staple as in Ref. [43, Sec. 2C]. Certain
modifications are required for the defect repair architecture in Sec. 4, as discussed therein.

We use reverse KL self-training [38, 52, 53] with path gradients [34, 54] to optimize the
models. Note that the base distributions here are pure gauge theories at 𝛽 > 0, rather than Haar
uniform (𝛽 = 0). This does not modify the training procedure formally, but does require sampling
the base distribution using HB+OR. In practice, we accomplish this by evolving 𝐵 independent
Markov chains alongside training, where 𝐵 is the batch size. In some cases we also employed
transfer learning between different volumes and action parameters [55]. Further details of the ML
methodology are provided in Ref. [43].

3. Transformed Replica EXchange (T-REX)

The parallel tempering or Replica EXchange (REX) algorithm [56, 57] simultaneously sam-
ples parallel Markov chains for a sequence of different, overlapping target densities (𝑝0, 𝑝1, . . .) on
the same lattice geometry. The algorithm proceeds by evolving the chains independently with an
appropriate MCMC update for each target (here, HB+OR for the 𝛽 of that chain), and then occa-
sionally proposing swaps of configurations between neighboring chains. Intuitively, this swapping
allows mixing with faster-moving targets to accelerate evolution in slower ones. However, the swap
acceptance rate (AR) falls as the lattice size grows, requiring increasingly many chains interpolating
between any two target 𝛽s to maintain a finite swap AR.

As introduced in Ref. [58], a flow which approximately bridges two neighboring densities can
be used to improve the swap AR between them, allowing more widely separated targets. For a flow
𝑓 , a proposed swap of (𝑈0,𝑈1) between the chains for targets 𝑝0 and 𝑝1 proceeds as: flow each
sample “across the bridge” as (𝑈′

1,𝑈
′
0) = ( 𝑓 −1(𝑈1), 𝑓 (𝑈0)), then accept or reject the swap with

probability2

𝑝acc = min
[
1,

𝑝0(𝑈′
1)𝑝1(𝑈′

0)
𝑝0(𝑈0)𝑝1(𝑈1)

𝐽 𝑓 (𝑈0)𝐽 𝑓 −1 (𝑈1)
]
. (4)

If accepted, the next state is (𝑈′
1,𝑈

′
0); if rejected, the present state (𝑈0,𝑈1) is replicated. We call this

algorithm “Transformed Replica EXchange” or T-REX. Several limiting cases are worth noting. For
an exact flow between 𝑝0 and 𝑝1, 𝑝acc = 1. For an identity flow, 𝑓 (𝑈) = 𝑈, untransformed/standard
REX is recovered. For two chains, one targeting Haar uniform and the other the theory of interest,
and with no MCMC update for the target chain,3 we recover a sampling scheme equivalent to
approximate direct sampling with independence Metropolis.

For a numerical test, we consider simultaneously sampling three chains with 𝛽 = (5.95, 6, 6.05)
on a 124 lattice geometry. Applying untransformed REX, we find the swap AR is no more than
10−4 for both 5.95 ↔ 6 and 6 ↔ 6.05. To improve this, we train two independent flows using the
setup of Sec. 2: one to bridge 5.95 ↔ 6 and another for 6 ↔ 6.05. Note that we train on 44 lattices
before transferring to 124 lattices, and also transfer between target parameters rather than training
each flow from scratch. Applying T-REX with these flows, we obtain swap ARs of ≈ 15% and
20%, respectively.

2This is equivalent to the expression in Ref. [58].
3This amounts to the choice of the identity operation as the MCMC update for the target stream. Using a nontrivial

update for the target stream is equivalent to alternating MCMC updates with flow model proposals as explored in Ref. [59].
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Figure 1: Evolution of the topological charge for a set of three different pure-gauge targets on a 124 volume,
sampled simultaneously using either REX or T-REX. REX swaps are almost never accepted, so it is equivalent
to independent HB+OR on each stream. One MCMC step is 5 HB hits followed by 2 OR hits. Swaps are
proposed every 5 steps.
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Figure 2: Running estimates of the integrated autocorrelation times of the topological charge for three
pure-gauge actions, sampled simultaneously using either REX or T-REX as in Fig. 1. Units are MCMC steps
as in Fig. 1. The curves show 1/2 +∑𝑡max

𝛿𝑡=1 𝐶𝑄 (𝛿𝑡) and are expected to plateau at 𝜏int (𝑄). Uncertainties are
evaluated as the standard error over 32 (40) independent streams for REX (T-REX), each of length 10000
(4500) steps. For T-REX, the 𝛽 = 6.05 curve is reproduced with a factor of 3 for ease of cost comparison.

Fig. 1 compares MCMC histories of the topological charge on the stream for each 𝛽, as sampled
using untransformed REX ≈HB+OR (equivalent here due to the ≈ zero swap AR) and T-REX using
the aforementioned flows. The onset of topological freezing is clearly visible in the untransformed
REX streams. T-REX provides a clear improvement in the mixing rate in all three streams.

To be more quantitative, in Fig. 2 we estimate the integrated autocorrelation time 𝜏AC of the
topological charge in each stream. Even the slowest-moving chain (𝛽 = 6.05) in T-REX is faster than
the fastest chain (𝛽 = 5.95) with REX ≈ HB+OR. Whether this represents an advantage depends
on the computational goal. We consider two scenarios. First, in a multi-ensemble calculation this
is an unambiguous speed-up if flow costs can be neglected: for the same number of HB+OR steps,
there is a gain in effective statistics in every stream. In addition, due to the swapping, the three
T-REX ensembles are correlated, which may be useful as discussed in Ref. [43]. Second, one might
imagine only 𝛽 = 6.05 is of interest, and the goal is to resolve topological freezing by bridging to
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lower, unfrozen 𝛽s as in approximate direct sampling. In this case, the other 𝛽s are sampled only
to improve mixing and discarded after as a side-product. We find that after paying the 3× overhead
factor of running HB+OR for three streams instead of one (and again neglecting flow costs), the cost
of sampling 𝛽 = 6.05 is the same with either HB+OR or T-REX. Apparently, it will be necessary
to bridge more widely separated 𝛽s to obtain an advantage in this scenario.

4. Defect Repair Replica EXchange (DR-REX)

The different targets in replica exchange need not all be theories of physical interest. This
allows for opportunistic choices of unphysical actions designed to accelerate topological charge
mixing when sampled alongside a single physical target stream. An existing approach which
exploits this is Parallel Tempering Boundary Conditions (PTBC) [60–62]. The idea is as follows.
Open boundary conditions (OBCs) are known to alleviate topological freezing [63], but periodic
boundary conditions (PBCs) are preferable otherwise. PTBC uses REX to sample a sequence of
actions interpolating between OBCs and PBCs to accelerate topological mixing in the target PBC
stream. In practice, rather than using OBCs across the full spatial extent of the lattice, introducing
a localized OBC defect (“poking a hole in the boundary”) can be sufficient to speed up topological
mixing while requiring fewer interpolating chains.

More precisely, these defected theories are defined here using a generalization of the Wilson
pure gauge action with a separate 𝛽 for each plaquette, i.e.,

𝑆𝑔 (𝑈) = − 1
𝑁𝑐

∑︁
𝑥

∑︁
𝜇<𝜈

𝛽𝜇𝜈 (𝑥) Re Tr 𝑃𝜇𝜈 (𝑥) . (5)

An OBC-type defect is defined as one where 𝛽𝜇𝜈 (𝑥) = 𝛽𝑑 < 𝛽 for all defect plaquettes, as defined by
those touching the timelike links in a 𝐿3

𝑑
× 1 volume, and 𝛽𝜇𝜈 (𝑥) = 𝛽 for all other plaquettes. True

temporal OBCs are recovered for a full-lattice defect 𝐿𝑑 = 𝐿 and 𝛽𝑑 = 0. Other defect geometries
can be considered and may work better in practice. HB+OR can be generalized straightforwardly
to sample these actions.

The novel approach explored here is to apply T-REX to PTBC. In this case, the role of the
flow is to (perhaps partially) repair the defect, hence we dub the algorithm Defect Repair Replica
EXchange (DR-REX). The locality of the defect makes this a particularly appealing application.
Because the physical effects of the defect are localized in its neighborhood, the defect repair flow
needs only to act on a subvolume containing this neighborhood, formally performing the identity
operation elsewhere. This confers two advantages. First, the swap AR given some subvolume flow
is approximately the same for any target volume, with no exponential scaling [31, 55]. Second, the
computational cost of applying the subvolume flow is independent of the target volume, such that
applying the flow can be much less expensive than the MCMC updates for large-volume targets.

The geometry acted on by the flow is sketched in Fig. 3. A halo of links at the boundary of the
subvolume is kept frozen throughout the flow. The absence of translational symmetry in the problem
requires generalizing the architecture used in the previous application. We use the straightforward
option of promoting every parameter in the model to a lattice of parameters, i.e. adding a site index
to each parameter.4 We break reflection symmetries in the model in a similar manner. Although this

4This is analogous to generalizing convolutional layers to define “locally connected layers”.
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Figure 3: Sketches of the geometry for defect repair flows. At left, the flow performs the identity operation
outside the orange region. The active region around the defect (orange) is acted upon, conditioned on its
local context (blue). At right, the exact subvolume geometry used for the flows in this work. This geometry
is symmetric in all spatial directions (𝑦, 𝑧 not shown).
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Figure 4: Evolution of the topological charge under PTBC or DR-REX for pure-gauge targets with 𝛽 = 6.3
on a 164 volume with OBC defects of size 23 with 𝛽𝑑 = 0, 3, 6.3, where 𝛽𝑑 = 𝛽 = 6.3 is the target stream
with no defect. PTBC swaps are almost never accepted, so it is equivalent to independent HB+OR on each
stream. One MCMC step is 1 HB hit followed by 5 OR hits. Swaps are proposed every 10 steps.

massively increases the parameter count, the computational cost of training or applying the flow is
not substantially increased. Note that while this choice “hard codes” a flow to a specific subvolume
geometry, it can still be applied to subvolumes embedded in different target volumes. Subvolume-
transferrable models could be obtained by e.g. instead parametrizing this site dependence with
neural networks, but we leave these complications for future work.

For our numerical test, we consider OBC defects of size 23 in a 164 target at 𝛽 = 6.3. We
train two defect repair flows which act on 84 subvolumes, one bridging between 𝛽𝑑 = 0 and 3, and
a second bridging 3 and 6.3, where 𝛽𝑑 = 6.3 is the undefected target. Figure 3 shows the precise
subvolume geometry. We train each flow independently, using smaller volumes (104, then 124) than
the target. Sampling these three theories with 𝛽𝑑 = 0, 3, 6.3 with untransformed PTBC results in
a very small swap rate; we observed no accepted swaps in 105 attempts. Adding the flows enables
swap ARs of 23% and 28% in DR-REX, thus providing at least an 𝑂 (104) improvement. A more
fair comparison may be that unflowed PTBC obtains comparable swap ARs with 𝛽𝑑 interpolated
over 7-8 chains, amounting to a ∼ 2× improvement.
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Figure 5: Running estimates of the integrated autocorrelation times of the topological charge for sampling
using PTBC or DR-REX as in Fig. 4. Units are MCMC steps as in Fig. 4. The curves show 1/2+∑𝑡max

𝛿𝑡=1 𝐶𝑄 (𝛿𝑡)
and are expected to plateau at 𝜏int (𝑄). Uncertainties are evaluated as the standard error over 24 independent
streams, each of length 29000 steps. For DR-REX, the 𝛽𝑑 = 6.3 curve is reproduced with a factor of 3 for
ease of cost comparison.

Figure 4 compares topological charge histories for PTBC ≈ HB+OR with those of DR-REX.
Clearly, the topological charge is severely frozen for HB+OR, and changes more rapidly under DR-
REX. However, much of this apparent mixing is due only to swapping, rather than tunneling events.
To assess whether an advantage has been obtained, we estimate 𝜏int

𝑄
in Fig. 5. Accounting for the 3×

overhead of running HB+OR for three chains, we find that DR-REX is only at the break-even point
with HB+OR, neglecting flow costs. Evidently, the 23 OBC defect does not sufficiently increase
the tunneling rate (note 𝜏int

𝑄
is approximately the same across the different HB+OR streams). We

conclude that it will be necessary to repair larger defects to obtain a true computational advantage.

5. Outlook

There are a number of promising avenues to employ machine-learned flows on gauge fields for
computational advantages in lattice QCD calculations. Ref. [43] demonstrated uses of correlated
ensembles generated by flows. In this Proceedings, we explore two different replica exchange
methods, T-REX and DR-REX, to improve topological freezing. Computational advantage has yet
to be shown when accounting for all costs associated with the learned components. However, if
they may be neglected, there are already demonstrated advantages if several nearby ensembles are
to be generated simultaneously. Moreover, there are structural reasons to believe these methods are
especially promising.

Flowed replica exchange methods may be thought of as a generalization of approximate direct
sampling with an adjustable trade-off between how much of the sampling task is accomplished
by flows versus traditional MCMC updates. With two chains, T-REX provides an exact sampling
scheme to use flows between a target theory and a nontrivial base distribution, even when exact
sampling is not possible for the base distribution. This can enable useful flow-based sampling
before full trivializing maps are available, and a smooth approach to the capabilities of approximate
direct sampling as flow technology develops further. Using more chains to interpolate over a
sequence of theories further eases requirements on flow model quality. We note that these same
advantages also hold for the closely related class of algorithms including Continual Repeated

8
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Annealed Flow Transport Monte Carlo (CRAFT) [64, 65] and various limiting cases thereof [66],
including stochastic normalizing flows (SNFs) [67, 68].

The combination of flows with the PTBC algorithm, DR-REX, has important structural ad-
vantages that make it an especially promising application of flows. Flows can increase the swap
AR between chains, potentially making larger defects practical than with untransformed replica
exchange alone. Furthermore, defect repair flows which act on a fixed-size embedded subvolume
can be applied to larger target volumes without increasing the application cost of the flow or the
required model quality. The defects treated in the application here were too small to alleviate
freezing, via either PTBC or DR-REX, but there is a clear path forward with well-defined learning
tasks achievable with iterative improvements over what is done here.

With further model tuning (which was not extensively explored here), and continued develop-
ment of flow technology, both T-REX and DR-REX present promising avenues to computational
advantage in lattice QCD gauge field generation at scale. To fully exploit novel flow technology
it will be important to further develop these methods and continue to explore other algorithmic
approaches to accelerate sampling by incorporating flows.
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