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1. Introduction

The idea of using a Trivializing Map for improving Markov Chain Monte Carlo (MCMC)
calculations in Quantum Chromodynamics (QCD) has been proposed more than 10 years ago [1].
In this approach, the field variables that satisfy a non-trivial distribution are mapped to new variables
that satisfy a trivial distribution. This is done by via a bĳective map that transforms the trivial
probability density distributions to the target one. Although, a very promising idea, up to now it
has not found an efficient application to QCD. In this work, we turn our attention to a much simpler
model, the O(3) sigma model in two dimensions. This model, shares with QCD the properties of
asymptotic freedom [2] as well as the existence of mass gap [3]. It is, therefore, a non-trivial theory
that might help us understand the properties of trivializing maps that could be relevant to QCD.
Furthermore, this toy model is less computationally intensive and allows for new algorithms to be
designed and tested much quicker than would be possible in QCD [4]. A similarly motivated study
has already been made in the case of the CP(N-1) model in two dimensions [5], where the leading
order approximation in the flow time expansion was used to study the potential of improvement of
the corresponding Hybrid Monte Carlo algorithm. In this contribution, we discuss the perturbative
flow time expansion of the generating functional of the gradient flow which defines our trivializing
map.

2. Trivializing Map

A Trivializing Map [1] may be defined as a map between the initial condition and the solution
of a gradient flow at a specific flow time t. Without loss of generality, this time is taken to be 𝑡 = 1.
This map is then used to transform random variables with a non-trivial distribution to random
variables with a trivial distribution (i.e. easy to sample from). The gradient flow is defined by a
generating functional, 𝑆[𝑠], that is a scalar function of the field variables, 𝑠(𝑥). The generator of
the flow is defined through its gradient.

¤𝑠(𝑥) = 𝜕𝑥𝑆[𝑠] 𝜕𝑥 ≡ 𝜕

𝜕𝑠(𝑥) (1)

Given that the initial conditions of the fields, 𝑠(𝑥, 0) = 𝜎 at 𝑡 = 0, the map is then defined as

𝑠(𝑥, 𝑡) = F −1
𝑡 (𝜎) (2)

The field variables, 𝑠(𝑥, 𝑡), are time-dependent values that are determined from the initial conditions.
The map, F −1

𝑡 , due to the uniqueness of solutions of the flow equation, is bĳective and is therefore
invertible, F𝑡 (𝑠(𝑥, 𝑡)) = F𝑡 (F −1

𝑡 (𝜎)) = 𝜎. This map can be seen as a change of variables between
the distributions of the 𝑠 and 𝜎 fields.

𝑞(𝜎)D𝜎 = 𝑞(F1(𝑠)) det J (𝑠)D𝑠 (3)

where J is the Jacobian of the transformation. This is the trivializing map if it transforms the
trivial distribution into the target distribution.

𝑝(𝑠)D𝑠 = 𝑞(F1(𝑠)) det J (𝑠)D𝑠 (4)
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Taking the log of both sides results in

𝑆𝑡 (𝑠) = 𝑆0(F1(𝑠)) − ln[det J (𝑠)] − 𝐶 , (5)

where 𝑆𝑡 and 𝑆0 are the target and trivial actions respectfully and 𝐶 is a constant determined by
the partition function of the distributions. To go further, we must consider the Jacobian, J , for the
specific change of variables we are interested in. In our case the 2D-O(3) sigma model.

3. The 2D-O(3) sigma model

The lattice 2D-O(3) sigma model is defined by the action,S[𝑠], and the probability distribution,
𝑝 [𝑠], where the integration measure, D𝑠 is over the unit sphere S2

S[𝑠] = 𝛽

2

∑︁
𝑥

∑︁
𝜇

(1 − 𝑠𝑥 · 𝑠𝑥+𝜇), 𝑠𝑥 ∈ S2, 𝑥 ∈ Z2, 𝜇 ∈ {Z2 �� |𝜇 | = 1} (6)

𝑝 [𝑠] = 𝑒−S[𝑠]

Z , Z =

∫
D𝑠 𝑒−S[𝑠] (7)

To define a Trivializing Map from a gradient flow we need to first consider the complications that
arise from the compact nature of the sigma model. The map has to transform the sphere to a sphere
i.e. S2 → S2. This implies that any transformation of the spin degrees of freedom must be an
SO(3) rotation:

∀𝑅 ∈ 𝑆𝑂 (3) & ∀𝑠 ∈ S2, 𝑅 ∗ 𝑠 ∈ S2 (8)

Therefore, the most general map that takes an S2 valued vector field 𝜎 and maps to an S2 valued
vector field 𝑠, can be written as

𝑠(𝑥) = 𝑅(𝑥) 𝜎(𝑥) , (9)

where 𝑅(𝑥) is an element of SO(3) which is determined up to an SO(2) rotation. Rotations about
the axis of the vector are the identity transformation. This quotient subgroup SO(3)/SO(2) of SO(3)
is diffeomorphic to the sphere S2 manifold.

It is useful to consider parametrizing the spin variables 𝑠(𝑥) as a rotation of a reference vector.
This way the Lie derivative defined through an infinitesimal rotation can be expressed as following:

𝑠(𝑥) = 𝑅(𝑥)𝑠0, 𝑅(𝑥) = exp(
∑︁
𝛼

𝜔𝛼
𝑥 𝐿𝛼) (10)

𝜕𝛼
𝑦 𝑅(𝑥) = 𝐿𝛼𝑅(𝑥) 𝛿𝑥,𝑦 =⇒ 𝜕𝛼

𝑦 𝑠(𝑥) = 𝐿𝛼𝑠(𝑥) 𝛿𝑥,𝑦 . (11)

where 𝐿𝑎 are the traceless antisymmetric generators of so(3). This derivative satisfies the expected
property ∑︁

𝛼

𝑠𝑎 (𝑥)𝜕𝑎
𝑥 𝑠(𝑥) = 0 . (12)

In other words, the derivatives are elements of the tangent bundle. Using a scalar functional of the
fields, 𝑆, whose gradient defines the generator of the flow, we have a flow on the 𝑆2 manifold as

¤𝑠(𝑥, 𝑡) = −
∑︁
𝑎

𝐿𝑎𝜕
𝛼
𝑥 𝑆[𝑠(𝑥, 𝑡)] 𝑠(𝑥, 𝑡). (13)
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4. Trivializing Flows in the Sigma Model

With the fields and their derivatives defined, it is now clear what we mean by the Jacobian in
Eq. (5). The Jacobian Matrix is then given by:

J 𝑎,𝑏 [𝑅′(𝑥)] (𝑥, 𝑦) = −1
2

Tr[𝜕𝑏𝑦 𝑅(𝑥)𝑅T (𝑥)𝐿𝑎] (14)

where 𝜕𝑏𝑦 is the Lie derivative with respect to the initial condition fields 𝜎(𝑥).
In Eq. (5) we have written the target distribution as independent of flow time while, in principle,

it could have explicit flow time dependence in which it interpolates between trivial and the final
target distributions. The simplest case is a linear interpolation between the two distributions.

𝑆𝑡 (𝑠(𝑡), 𝑡) = 𝑡 [𝑆0(𝑠(𝑡)) − S(𝑠(𝑡))] + S(𝑠(𝑡)) (15)

Where at 𝑡 = 0, 𝑆𝑡 (𝑠(𝑡), 𝑡) is the target distribution, S, and at 𝑡 = 1 it is the trivial distribution,
𝑆0. Using this simplifying ansatz, we may take the total time derivative of our matching condition
Eq. (5). ∑︁

𝑥

𝜕𝑥𝑆𝑡 (𝑠) ¤𝑠(𝑡) + 𝜕𝑡𝑆𝑡 (𝑠) =
𝑑

𝑑𝑡
𝑆0(F1(𝑠)) −

𝑑

𝑑𝑡
ln[det J (𝑠)] − ¤𝐶 (16)

From here, some simplifying steps may be taken. For any compact group, such as 𝑆𝑂 (3), the trivial
action is simply 𝑆0 = 0, which is constant and thus has no time dependence. It can also be shown
that the total time derivative of the Jacobian term may be simplified,

𝑑 ln det[J (𝑅𝑡 )]
𝑑𝑡

=
𝑑 Tr ln[J (𝑅𝑡 )]

𝑑𝑡
= Tr[ ¤J (𝑅𝑡 )J −1(𝑅𝑡 )] = 𝜕𝑎

𝑥 𝜕
𝑎
𝑥 𝑆 (17)

In which case, using Eqs. (13) and (15) it can be shown that the matching condition reduces to:

−𝜕2𝑆 + 𝑡
∑︁
𝑥

𝜕𝑥S 𝜕𝑥𝑆 = −S − ¤𝐶 (18)

Exact solutions for the generating functional, 𝑆, are not possible. However, the small flow time
expansion lets us determine 𝑆 and ¤𝐶 in a power series of 𝑡.

𝑆(𝑠(𝑡), 𝑡) =
∑︁
𝑛

𝑡𝑛𝑆 (𝑛) (𝑠(𝑡)) ¤𝐶 (𝑡) =
∑︁
𝑛

𝑡𝑛 ¤𝐶 (𝑛) (19)

Using this form and collecting like powers of 𝑡, we determine 2 classes of equations

𝑛 = 0 : − 𝜕2𝑆 (0) = −S − ¤𝐶 (0) (20)

𝑛 ≥ 1 : − 𝜕2𝑆 (𝑛) +
∑︁
𝑥

𝜕𝑥S 𝜕𝑥𝑆
(𝑛−1) = − ¤𝐶 (𝑛) (21)

These equations have no explicit dependence on 𝑡, and because they must hold for every 𝑡 we may
consider these fields at any instant to have static values. Much like in the case of 𝑆𝑈 (3) gauge
theory [1], this set of equations allows us to construct an iterative process to compute 𝑆 (𝑛) to any
order, as each order depends only on our target action, S, and the previous order solution.
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4.1 Perturbative Solution

The 0𝑡ℎ Order is a special case that only depends on the target action.

−𝜕2𝑆 (0) = −S − ¤𝐶 (0) , S =
−𝛽
2

∑︁
𝑥, 𝜇

𝑠𝑥 · 𝑠𝑥+𝜇 (22)

Consider the ansatz that 𝑆 (0) has the same functional form as S.

𝑆 (0) = 𝛾0
∑︁
𝑥, 𝜇

𝑠𝑥 · 𝑠𝑥+𝜇 (23)

Then, using Eqs. (11) and (22) it is easy to show,

−𝜕2𝑆 (0) = 4𝑆 (0) =⇒ 4𝛾0 =
𝛽

2
=⇒ 𝛾0 =

𝛽

8
=⇒ 𝑆 (0) =

𝛽

8

∑︁
𝑥, 𝜇

𝑠𝑥 · 𝑠𝑥+𝜇 (24)

Using the 0𝑡ℎ order solution and Eq. 21 we can construct the 1𝑠𝑡 order solution by noting that:

=⇒ − 𝜕2𝑆 (1) =
𝛽2

4

∑︁
𝑥

[∑︁
𝜇,𝜈

(𝑠𝑥 · 𝑠𝑥+𝜇+𝜈) − (𝑠𝑥 · 𝑠𝑥+𝜇) (𝑠𝑥 · 𝑠𝑥+𝜈)
]
− ¤𝐶 (1) (25)

We may assume that 𝑆 (1) has the same functional form as the RHS of the above equation.
However, when applying 𝜕2 this ansatz for 𝑆 (1) , a new type of term arises. So we must change
the functional form to include the new term. This process is repeated until the set of terms in the
functional form is closed under 𝜕2. This generates a good basis for the solution space. Using this
it is possible to solve for the 1𝑠𝑡 order flow functional.

𝑆 (1) =
𝛽2

40

[
2Ψ (2) − Ψ̃ (1,1) + 1

6
Ψ (1,1 𝑓 )

]
(26)

where,

Ψ (2) =
∑︁
𝑥

∑︁
𝜇,𝜈

𝑠𝑥 ·𝑠𝑥+𝜇+𝜈 , Ψ̃ (1,1) =
∑︁
𝑥

∑︁
𝜇,𝜈

(𝑠𝑥 ·𝑠𝑥+𝜇) (𝑠𝑥 ·𝑠𝑥+𝜈), Ψ (1,1 𝑓 ) =
∑︁
𝑥

∑︁
𝜇

(𝑠𝑥 ·𝑠𝑥+𝜇)2 (27)

Following the same steps as the 1st Order, continually adding terms to the ansatz until the set
of terms is closed under 𝜕2, gives:

𝑆 (2) =
𝛽3

72000

[
− 4467Ψ (1) + 1305Ψ (3) − 990Ψ̃ (2,1) − 300Ψ̃ (1,2)

𝑑
+ 200Ψ̃ (1,1,1)

𝑏𝑟𝑎𝑛𝑐ℎ

+ 225Ψ̃ (1,1,1)
𝑐ℎ𝑎𝑖𝑛

+ 246Ψ̃ (1,2 𝑓 ) − 210Ψ̃ (1,1 𝑓 ,1) + 35Ψ̃ (1,1 𝑓 ,1 𝑓 )
]

where,

Ψ (1) ≡
∑︁
𝑥

∑︁
𝜇

𝑠𝑥 · 𝑠𝑥+𝜇 Ψ (3) ≡
∑︁
𝑥

∑︁
𝜇,𝜈,𝜆

𝑠𝑥 · 𝑠𝑥+𝜇+𝜈+𝜆 Ψ̃ (2,1) ≡
∑︁
𝑥

∑︁
𝜇,𝜈,𝜆

(𝑠𝑥 · 𝑠𝑥+𝜇+𝜈) (𝑠𝑥 · 𝑠𝑥+𝜆)

Ψ̃
(1,2)
𝑑𝑖𝑠𝑐

≡
∑︁
𝑥

∑︁
𝜇,𝜈,𝜆

(𝑠𝑥 · 𝑠𝑥+𝜇) (𝑠𝑥+𝜈 · 𝑠𝑥+𝜆) Ψ̃
(1,1,1)
𝑏𝑟𝑎𝑛𝑐ℎ

≡
∑︁
𝑥

∑︁
𝜇,𝜈,𝜆

(𝑠𝑥 · 𝑠𝑥+𝜇) (𝑠𝑥 · 𝑠𝑥+𝜈) (𝑠𝑥 · 𝑠𝑥+𝜆)

Ψ̃
(1,1,1)
𝑐ℎ𝑎𝑖𝑛

≡
∑︁
𝑥

∑︁
𝜇,𝜈,𝜆

(𝑠𝑥 · 𝑠𝑥+𝜇) (𝑠𝑥+𝜇 · 𝑠𝑥+𝜇+𝜈) (𝑠𝑥+𝜇+𝜈 · 𝑠𝑥+𝜇+𝜈+𝜆) Ψ̃ (1,2 𝑓 ) ≡
∑︁
𝑥

∑︁
𝜇,𝜈

(𝑠𝑥 · 𝑠𝑥+𝜇) (𝑠𝑥 · 𝑠𝑥+𝜇+𝜈)

Ψ̃ (1,1 𝑓 ,1) ≡
∑︁
𝑥

∑︁
𝜇,𝜈

(𝑠𝑥 · 𝑠𝑥+𝜇2) (𝑠𝑥 · 𝑠𝑥+𝜈) Ψ̃ (1,1 𝑓 ,1 𝑓 ) ≡
∑︁
𝑥

∑︁
𝜇

(𝑠𝑥 · 𝑠𝑥+𝜇)3
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This process may be continued to arbitrary order, however, the set of terms grows rapidly. The
3rd order has 40 unique types of terms. The 4th order has 176 unique types of terms. Therefore,
the procedure becomes quickly intractable as it proceeds to higher orders. A Rust and Python
implementation has been made to calculate the terms to arbitrary order (and cross-check), but these
terms were not implemented in our simulation 1.

5. Numerical Tests
Using the approximate solution detailed above defines a flow that approximately maps trivial

variables to those following the distribution of the 2D-O(3) model. By applying this map on
uniformly distributed fields of unit vectors, it is possible to generate samples that are close to the
target distribution. Using Eq. (5) we measure the deviation from the true distribution. A perfect
flow would always result in the LHS being equal to the RHS. Therefore the error on the map may be
determined by the variance of the differences between the approximate distribution and the target
distribution. A variance of the difference is used as any overall shift may be absorbed into the
definition of the action and has no effect on the distribution.

𝜎Δ𝑆 = 𝑉𝑎𝑟 (Δ𝑆)1/2 ≡ 𝑉𝑎𝑟

(
S(𝑠) −

[
𝑆0(F (𝑠)) − ln J (𝑠)

] )1/2
(28)

To investigate the accuracy of the flow, simulations were performed to apply the flow on trivial
fields. For each measurement, we considered 400 configurations, where the flow was applied via a
fixed step size of 𝛿𝑡 = 0.05. Jackknife sampling was used to determine the errors of the variances.
We computed the scaling of the 𝜎Δ𝑆 as a function of the lattice volume 𝑉 and the coupling 𝛽

of the target action. We observe linear scaling of 𝜎Δ𝑆 with the lattice side length 𝐿 = 𝑉1/2 as
shown in Figure 1. This test was performed at fixed 𝛽 = 0.5. As higher order terms are included
𝜎Δ𝑆 is reduced for all lattice sizes 𝐿. Furthermore, at fixed order in the flow time expansion, the
scaling of 𝜎Δ𝑆 is approximately linear with the lattice size 𝐿 in lattice units. The linear scaling
of 𝜎Δ𝑆 with lattice size suggests that the quality of the approximation of the target distribution
via the approximate Trivializing map will drop exponentially with 𝐿. In Figure 1 we consider the
scaling of 𝜎Δ𝑆 vs. 𝛽 while keeping the lattice size fixed, 𝐿 = 36. Our solution is an expansion in
0 ≤ 𝑡 ≤ 1 however, at every order, an additional factor of 𝛽 is obtained through the contraction with
S. For that reason the truncation to a fixed order results in polynomial corrections in 𝛽 at small 𝛽
(𝜎Δ𝑆 𝛽2(Ord. 0), 𝜎Δ𝑆 𝛽3(Ord. 1), 𝜎Δ𝑆 𝛽4(Ord. 2)). From our current experiments, it is not clear
what the behavior of the approximation is as one approaches criticality at large 𝛽 and volumes.

We may improve the approximation by adding a subset of known terms to approximate higher-
order solutions with little increase in computational cost. By noticing that Ψ (1) appears in both the
0th order and 2nd order solutions it is then possible to know that all terms that appeared in the 1st
order solution will appear in the 3rd order solution. This is because the process for determining the
initial set of each order is the same, specifically

∑
𝑥 𝜕𝑥S 𝜕𝑥𝑆

(𝑛−1) . This also works with respect to
the 2nd-order and 4th-order solutions. Therefore it is possible to determine which terms appear in
"even" order solutions and terms that appear in "odd" order solutions.

𝑆 (2𝑛) = 𝛽2𝑛+1
∑︁
𝑎

𝛾
(2𝑛)
𝑎 Ψ𝑎

𝑒𝑣𝑒𝑛 𝑆 (2𝑛+1) = 𝛽2𝑛+2
∑︁
𝑎

𝛾
(2𝑛+1)
𝑎 Ψ𝑎

𝑜𝑑𝑑 (29)

1See https://github.com/cdchamness/O3OrderExpansion
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Figure 1: The standard deviation of Δ𝑆 as a function of the Lattice Size (left) and coupling 𝛽 (right). The
lines are fitted to the data as described in the text.

By non-perturbative tuning of the {𝛾 (𝑛)
𝛼 }, it might be possible to increase performance further with

little cost to performing the flow, as these terms would already be computed for previous orders.

6. Conclusions
In this contribution, we present an analytic construction of a trivializing flow for the 2D-O(3)

sigma model. The construction is based on a gradient flow on the S2 manifold, whose generating
functional is determined order-by-order in the small flow-time expansion. This perturbative expan-
sion is algorithmic and has been programmed in principle to all orders. However, it is impractical
beyond the first few orders. We numerically tested the efficiency of the approximation and found
evidence that the computational cost of the approximation scales exponentially with the lattice
size. We intend to investigate this issue further both numerically and analytically. If such behavior
persists it is doubtful that trivializing maps constructed perturbatively or non-perturbatively can
eliminate critical showing down which occurs close to criticality where large correlation lengths
mandate large lattices in lattice units.
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