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1. Introduction

Lattice calculations of the charm-light and charm-strange decay constants 𝑓D and 𝑓Ds , respec-
tively, together with the experimentally measured decay rates of the weak decays of D and Ds

mesons into a lepton and a neutrino can be used to determine the CKM matrix elements |𝑉cd | and
|𝑉cs |. Such a determination contributes to a wider effort to constrain CKM matrix elements utilising
many different processes, enabling precision tests of the unitarity of the matrix to be performed.
However, observables involving both charm and light or strange quarks are challenging to compute
on the lattice with all sources of systematic uncertainty under control. Discretisation effects arising
from the heavy quark action require simulations with fine lattice spacings, while the light (and
strange) quark mass dependence needs to be sufficiently constrained, in particular, close to the
physical point.

We present results for the decay constants from an analysis of 𝑁f = 2+1 Wilson fermion gauge
field configurations generated by the Coordinated Lattice Simulations (CLS) consortium [1–3],
where the charm quark is introduced as a quenched flavour. For Wilson fermions, the axial-vector
matrix elements (through which the decay constants are defined) are multiplicatively renormalised
and the action and axial-vector current must be non-perturbatively improved in order to achieve
leading order O(𝑎2) discretisation effects. Nonetheless, employing the precision non-perturbative
determination of the renormalisation factor of ref. [4] and the improvement coefficients of refs. [5, 6],
renormalisation and improvement are not significant sources of uncertainty in our analysis. In the
following, we give details of our lattice setup and the determination of the decay constants on each
ensemble. We then outline our approach for performing the continuum and chiral extrapolations
and present the final results before summarising. Further details of this analysis can be found in
Ref. [7].

2. Lattice setup

We employ 49 high statistics CLS ensembles generated with non-perturbatively O(𝑎) improved
Wilson fermions [8, 9] and the tree-level Symanzik improved gauge action [10]. Six lattice spacings
are realised with 𝑎 ranging from 0.098 fm down to 0.039 fm. The ensembles lie on three trajectories
in the quark mass plane, as displayed in Fig. 1. Two of the trajectories meet at the physical point:
along one trajectory (denoted Tr𝑀 = const.) the flavour average of the light and strange quark
masses is held constant, and along the other (referred to as 𝑚s ≈ const. ) the strange quark mass is
fixed to approximately its physical value. The third trajectory (labelled 𝑚l = 𝑚s) runs towards the
SU(3) chiral limit, with the light and strange quark masses set to be equal. Overall, the pion mass
varies from 𝑚𝜋 ≈ 420 MeV down to 129 MeV, where for most ensembles the spatial extent 𝐿 is
large enough such that 𝑚𝜋𝐿 ≳ 4 and significant finite-volume effects are avoided. Lattice spacings
as fine as 0.04 fm are achieved utilising open boundary conditions in time [11] to avoid the problem
of topological freezing. The charm quark is partially quenched in our analysis. Two values of the
charm quark mass are employed per ensemble, which are chosen such that only a small interpolation
or (in a few cases) extrapolation to the physical value is required.

The pseudoscalar decay constants 𝑓D and 𝑓Ds are defined via the matrix elements of the axial
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Figure 1: Overview of the ensembles used in this work in the plane of (renormalised) light and strange quark
masses: the chiral trajectory where Tr𝑀 = const. approaches the physical point from below (blue line) and
meets the trajectory with renormalised strange quark mass 𝑚s ≈ const. (orange line) at the physical point
by construction. A third trajectory for which the light and strange quark masses are equal, 𝑚l = 𝑚s (yellow
line), approaches the SU(3) chiral limit. The orange line is obtained by setting 8𝑡0 (𝑚2

K − 1
2𝑚

2
𝜋) to its physical

value, analogously the blue line is defined by fixing M̄2 ≡ 8𝑡0
(
2𝑚2

K + 𝑚2
𝜋

)
/3 = M̄2

phys.

vector current between D and Ds meson states at momentum 𝑝 and the vacuum, respectively,〈
0
��𝐴lc
𝜇

��D(𝑝)
〉
= i 𝑓D𝑝𝜇,

〈
0
��𝐴sc
𝜇

��Ds(𝑝)
〉
= i 𝑓Ds 𝑝𝜇 . (1)

The axial vector current is given by 𝐴𝑞c
𝜇 (𝑥) = 𝑞(𝑥)𝛾𝜇𝛾5𝑐(𝑥) for quark flavours 𝑞 = l, s. In order to

remove O(𝑎) cutoff effects from the matrix elements, we construct an improved current

𝐴
𝑞c,I
𝜇 = 𝐴

𝑞c
𝜇 + 𝑎𝑐A

1
2

(
𝜕𝜇 + 𝜕∗𝜇

)
𝑃𝑞c, (2)

where the pseudoscalar operator is 𝑃𝑞c(𝑥) = 𝑞(𝑥)𝛾5𝑐(𝑥) and 𝜕𝜇 and 𝜕∗𝜇 denote the lattice forward
and backward derivatives, respectively. Including the mass dependent 𝑂 (𝑎) improvement terms,
the renormalised improved current reads [12](

𝐴
𝑞c,I
𝜇

)
R
= 𝑍A

[
1 + 𝑎

(
𝑏A𝑚𝑞c + �̄�ATr𝑀

) ]
𝐴
𝑞c,I
𝜇 + O(𝑎2), (3)

where 𝑚𝑞c and Tr𝑀 denote the bare vector Ward identity quark mass combinations

𝑚𝑞c =
1
2
(
𝑚𝑞 + 𝑚c

)
, Tr𝑀 = 2𝑚l + 𝑚s, with 𝑚𝑞 =

1
2𝑎

(
1
𝜅𝑞

− 1
𝜅crit

)
. (4)

The hopping parameter for quark flavour 𝑞 is denoted by 𝜅𝑞 and 𝜅crit labels its critical value. For
the renormalisation factor 𝑍A and the improvement coefficients 𝑐A and 𝑏A, we employ the non-
perturbative determinations of refs. [4–6], respectively. The improvement coefficient �̄�A has been
computed in refs. [6, 13], however, as the coefficient is compatible with zero for the range of gauge
couplings considered here, we set �̄�A = 0 in our analysis. For 𝜅crit we utilise the results of Ref. [3].

3



P
o
S
(
E
u
r
o
P
L
E
x
2
0
2
3
)
0
3
3

𝐷 and 𝐷𝑠 decay constants Sara Collins

In order to obtain the matrix elements of eq. (1), we evaluate the two-point functions

𝐶
𝑞c
𝐴0 �̃�

(𝑡) ≡ 𝐶𝑞c
𝐴0 �̃�

(𝑥0, 𝑦0) = − 𝑎
6

𝐿3

∑︁
®𝑥, ®𝑦

〈
𝐴
𝑞c,I
0 (𝑥)

(
�̃�𝑞c(𝑦)

)† 〉
,

𝐶
𝑞c
�̃��̃�

(𝑡) ≡ 𝐶𝑞c
�̃��̃�

(𝑥0, 𝑦0) = − 𝑎
6

𝐿3

∑︁
®𝑥, ®𝑦

〈
�̃�𝑞c(𝑥)

(
�̃�𝑞c(𝑦)

)†〉
, (5)

at zero momentum, where 𝑡 = 𝑥0 − 𝑦0 is the difference between the sink and source timeslices, 𝑥0

and 𝑦0, respectively. The spatial extent is denoted by 𝐿. The correlators are calculated by means
of point-to-all propagators, where, for the pseudoscalar interpolator at the source and sink �̃�𝑞c(†) ,
we apply Wuppertal smearing [14, 15] with APE-smoothed links [16]. The number of smearing
iterations is varied across the ensembles in order to optimise the overlap with the ground state.
Note that the charm propagators are computed with the highest numerical precision that is possible
with our code: we impose relative residuals of around 10−15. No problems due to the numerical
accuracy of the charm quark propagators are observed when fitting to the correlation functions to
extract the heavy-light meson masses and decay constants (within the fit ranges chosen). In order to
increase statistics, the source operators are inserted, for most ensembles, at 20-30 different temporal
positions. For the open-boundary ensembles, the two-point correlation functions are only averaged
over the source and sink timeslices which lie within the bulk, where translational invariance applies.

We perform a combined fit to the �̃��̃� and 𝐴0�̃� correlation functions. The fitting range
[𝑡min, 𝑡max] for each correlation function is chosen from an analysis of the corresponding effective
mass. The upper end of the fit region is set by the time slice where the relative statistical uncertainty
of the effective mass exceeds 8%. The start of the fit region 𝑡min is chosen by performing a two-state
fit to the effective mass and applying the criterion that the contribution of the excited states is
less than 1

4 of the statistical uncertainty. In this way, excited state contributions to the two-point
functions can be neglected within the fitting range and the correlation functions are modelled with
single-exponentials with the same energy 𝑚D for 𝑞 = l, and 𝑚Ds for 𝑞 = s and amplitudes 𝐴𝑞c

𝐴0 �̃�
and

𝐴
𝑞c
�̃��̃�

,
𝐶
𝑞𝑐

𝐴0 �̃�
(𝑥0, 𝑦0) = 𝐴𝑞𝑐

𝐴0 �̃�
𝑒
−𝑚𝐷(𝑞) (𝑥0−𝑦0 ) , 𝐶�̃��̃� (𝑥0, 𝑦0) = 𝐴𝑞𝑐

�̃��̃�
𝑒
−𝑚𝐷(𝑞) (𝑥0−𝑦0 ) , (6)

Based on the spectral decomposition of the correlators, the bare matrix elements are extracted from
the ground state energy and amplitudes via

𝑓𝐷(𝑞) =

√
2𝐴𝑞𝑐

𝐴0 �̃�√︃
𝐴
𝑞𝑐

�̃��̃�
𝑚𝐷(𝑞)

. (7)

Representative results of the combined fits are displayed in Fig. 2 for the heavy-light meson
on ensemble E300 (𝑚𝜋 = 175 MeV, 𝑎 = 0.049 fm). The right panel compares the result for the
decay constant, computed as given in eq. (7), with an effective decay constant constructed from the
correlation functions and the fitted meson mass:

𝑓 eff
𝐷(𝑞)

(𝑥0, 𝑦0) =

√
2𝐶𝑞𝑐,𝐼

𝐴0 �̃�
(𝑥0, 𝑦0)√︃

𝐶
𝑞𝑐

�̃��̃�
(𝑥0, 𝑦0)𝑚𝐷(𝑞) 𝑒

−𝑚𝐷(𝑞) (𝑥0−𝑦0 )
(8)
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Figure 2: Results from combined fits to the �̃��̃� and 𝐴0�̃� two-point functions for the heavy-light meson on
ensemble E300 (𝑚𝜋 = 175 MeV, 𝑎 = 0.049 fm). (Left) The fit result for the meson mass (blue band) is shown
together with the effective masses of the two correlation functions. The lower end of the fit range (𝑡min) in
each case is indicated by a dashed line. (Right) The result for the decay constant obtained from the fit (grey
band) is displayed along with the effective decay constant (eq. (8)). The dashed line indicates the 𝑡min of the
𝐴0�̃� two-point function.

We achieve a statistical precision at the level of about 0.5% for 𝑓D(q) , in most cases. The statistical
uncertainties and the (auto-)correlations of the Monte Carlo data are determined and propagated
using the Γ-method [17, 18]. We utilise the pyerrors package implementation of this method [19].

3. Continuum and chiral extrapolation

We perform a combined fit to the heavy-light and heavy-strange decay constants, which by
construction are equal on the ensembles with SU(3) symmetry. The decay constants are evaluated
for two values of the heavy quark mass on each ensemble and we fit all the data together, accounting
for the heavy quark mass dependence in the fit parametrisation.

We model the dependence of the decay constants on the light, strange and charm quark masses
and the lattice spacing using parameterisations of the general form,√︁

8𝑡0 𝑓D(s) (𝑚𝜋 , 𝑚K, 𝑚D̄, 𝑎) =
√︁

8𝑡0 𝑓 cont
D(s)

(𝑚𝜋 , 𝑚K, 𝑚D̄, 0) + 𝑐D(s) (𝑚𝜋 , 𝑚K, 𝑚D̄, 𝑎), (9)

where we rescale the decay constants with
√

8𝑡0 so that we fit to dimensionless quantities. The
leading terms of the continuum part of the parameterisation are inspired by next-to-leading order
(NLO) SU(3) heavy meson chiral perturbation theory (HM𝜒PT) [20]√︁

8𝑡0 𝑓 cont
Ds

(𝑚𝜋 , 𝑚K, 𝑚D̄, 0) = 𝑓0 + 𝑐1 M̄2 + 2
3
𝑐2 𝛿M

2 + 𝑐3 (4𝜇K + 4
3
𝜇𝜂) + 𝑐4M̄H + . . . (10)√︁

8𝑡0 𝑓 cont
D (𝑚𝜋 , 𝑚K, 𝑚D̄, 0) = 𝑓0 + 𝑐1 M̄2 − 1

3
𝑐2 𝛿M

2 + 𝑐3 (3𝜇𝜋 + 2𝜇K + 1
3
𝜇𝜂) + 𝑐4M̄H + . . . (11)

where

M̄2 =
8𝑡0
3

(
2𝑚2

K + 𝑚2
𝜋

)
, 𝛿M2 = 16𝑡0

(
𝑚2

K − 𝑚2
𝜋

)
, 𝜇X = 8𝑡0𝑚2

X log(8𝑡0𝑚2
X), (12)
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with X ∈ {𝜋,K, 𝜂}. The mass of the 𝜂 meson is given by the Gell-Mann-Okubo relation

𝑚2
𝜂 ≈ 4

3
𝑚2

K − 1
3
𝑚2
𝜋 = �̄�2 + 1

3
𝛿𝑀2 . (13)

Note that SU(3) symmetry constrains the coefficients of the expansion, with 𝑓D = 𝑓Ds when 𝛿M2 = 0,
and, to this order, only four low energy constants are needed to parameterise both decay constants.
The heavy quark mass dependence is modelled using

M̄H =
√︁

8𝑡0𝑚D̄, 𝑚D̄ =

(
2
3
𝑚D + 1

3
𝑚Ds

)
(14)

After the implementation of 𝑂 (𝑎) improvement, the leading discretisation terms are

𝑐D(s) (𝑚𝜋 , 𝑚K, 𝑚D̄, 𝑎) = a2(𝑐𝑎1 + 𝑐𝑎2 M̄2 + 𝑐𝑎 (3,4) 𝛿M2 + 𝑐𝑎5M̄H) + . . . (15)

where a2 = 𝑎2/(8𝑡0), with 𝑡0 determined on each ensemble. For the D (Ds) meson decay constant,
the coefficient of the 𝛿M2 term is 𝑐𝑎3 (𝑐𝑎4).

We consider additional terms in the fit form and, by investigating the fit quality, we construct
a model with a minimal number of parameters that is able to describe our data reasonably well,√︁

8𝑡0 𝑓Ds (𝑚𝜋 , 𝑚K, 𝑚D̄, 𝑎) = 𝑓0 + 𝑐1 M̄2 + 2
3
𝑐2 𝛿M

2 + 𝑐3 (4𝜇K + 4
3𝜇𝜂) + 𝑐4 M̄H (16)

+ 𝑐5 M̄2
H + 𝑐6 𝛿M

2M̄H + 𝑐8 M̄2M̄H + 𝑐𝑎1 a2 + 𝑐𝑎5 a2M̄H ,√︁
8𝑡0 𝑓D(𝑚𝜋 , 𝑚K, 𝑚D̄, 𝑎) = 𝑓0 + 𝑐1 M̄2 − 1

3
𝑐2 𝛿M

2 + 𝑐3 (3𝜇𝜋 + 2𝜇K + 1
3𝜇𝜂) + 𝑐4 M̄H

+ 𝑐5 M̄2
H + 𝑐7 𝛿M

2M̄H + 𝑐8 M̄2M̄H + 𝑐𝑎1 a2 + 𝑐𝑎5 a2M̄H .

Only eleven parameters are needed to describe the 160 naive degrees of freedom, which are
effectively reduced due to the correlation in the data (between the masses and decay constants
determined on the same ensemble). The fit quality for this fully correlated fit is 𝜒2/d.o.f = 1.08.
The above expressions remain consistent with SU(3) constraints and there is only one fit parameter
(𝑐6 respectively 𝑐7) that is not shared by the ansätze for 𝑓D and 𝑓Ds . To explore the parameter space
of the extrapolation further and to test for higher order effects, we build a variety of models, which
extend eq. (16). We add up to four terms out of the following list of higher order terms in the quark
masses,

M̄2M̄2
H , M̄2𝛿M2 , (𝛿M2)2 , 𝛿M2M̄2

H , (𝛿M2)2M̄H , (17)

and up to three terms out of the following lists of terms describing lattice artifacts,

a2M̄2 , a2𝛿M2 , a3 , a3M̄2 , a3𝛿M2 , a3M̄H , a4 , a4M̄2 , a4𝛿M2 , a4M̄H . (18)

We exclude models that mix 𝑎3 and 𝑎4 cutoff effects and models with more than 16 parameters. In
total this amounts to 𝐾 = 482 models. The worst fit quality found in this set has a fully correlated
𝜒2/d.o.f. = 1.09. The best fit quality of the models under consideration, 𝜒2/d.o.f. = 0.92, is
obtained when adding a 𝛿M2M̄2

H, a3 and a3𝛿M2 term to eq. (16). This fit is displayed in Fig. 3.
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Figure 3: Simultaneous continuum and chiral extrapolation of 𝑓D and 𝑓Ds for the parameterisation with the
best fit quality. The vertical dashed lines indicate the physical point. The dependence on (top, left) the
pion mass squared, (top, right) the flavour average D meson mass and (bottom) the lattice spacing squared is
displayed. For the top figures, lattice spacing effects are removed using the fit. For the top-right and bottom
plots, the data points are shifted to the physical pion and kaon masses and for the latter and the top-left plot
the data are shifted to the physical D̄ meson mass.

Starting with the light quark mass dependence, the data lie along the three trajectories: the
Tr𝑀 = const. and 𝑚s ≈ const. trajectories (blue and red data points and fit curves, respectively)
have to coincide by definition at the physical point, tightly constraining the fit. The fit curves
clearly show that the strange quark effects on 𝑓D are small, while 𝑓Ds is largely insensitive to the
light quark mass, when keeping the strange quark mass at its physical value. Along the symmetric
line (yellow data points and curve), which approaches the SU(3) chiral limit when lowering the
pion mass, the 𝑓D and 𝑓Ds decay constants are equal. The curvature due to the chiral logarithms can
be mapped out thanks to the two ensembles at physical pion mass and several further ensembles
with 𝑚𝜋 < 200 MeV. Turning to the heavy quark mass dependence, shown in the top-right plot in
Fig. 3, we see that the results bracket the physical value of the flavour average D meson mass. By
performing a global fit of the heavy quark mass dependence, we are able to resolve terms quadratic
in M̄H. However, as seen in the figure, these contributions are rather minor.

Discretisation effects are a significant source of systematics for observables involving charm
quarks, with 𝑎𝑚c ≈ 0.6 for our coarsest lattice spacing. However, by utilising high statistics data
at six lattice spacings ranging from 𝑎 ≈ 0.10 fm down to 𝑎 = 0.039 fm (𝑎2 varies by more than a
factor of 6), we are able to clearly resolve the lattice spacing dependence, including both a2 and a3

terms. Figure 3 shows that with full non-perturbative O(𝑎) improvement, the size of these effects
is fairly moderate with a 5% difference between the decay constants at the coarsest lattice spacing
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and in the continuum limit.

4. Results

We extract results for the decay constants 𝑓Ds and 𝑓D at the physical point (in the continuum
limit) in physical units for each of the 482 fits considered. For this purpose, we employ the physical
value of the flow scale of Ref. [3] and define the physical point in isospin symmetric QCD using
the values for the pion and kaon masses given in FLAG’s 2016 review [21], 𝑚𝜋 = 134.8(3) MeV
and 𝑚K = 494.2(3) MeV. Utilising the isospin corrected masses of the D and Ds mesons quoted in
Ref. [22], we take flavour average D meson mass at the physical point to be 𝑚D̄ = 1899.4(3) MeV.
For the ratio 𝑓Ds/ 𝑓D, we simply divide the results at the physical point for the individual decay
constants. As our simultaneous fits to 𝑓D and 𝑓Ds take all correlations into account, we would not
expect to obtain more precise results by fitting to the ratio. Performing a model averaging procedure
based on the Akaike information criterion (AIC) [23, 24], our final results read

𝑓Ds = 246.8(0.64)stat(0.61)sys(0.95)scale [1.3] MeV ,

𝑓D = 208.4(0.67)stat(0.75)sys(1.11)scale [1.5] MeV , (19)

𝑓Ds/ 𝑓D = 1.1842(21)stat(22)sys(19)scale [36] ,

where the first error is statistical, the second is due to the systematics and the third arises from the
scale setting. The statistical error includes the uncertainties due to the renormalisation and improve-
ment coefficients and the hadronic scheme, while the systematic error quantifies the uncertainty
stemming from the model variation for continuum and quark mass extrapolations or interpolations.
The total uncertainty obtained by adding the individual errors in quadrature is given within the
square brackets. The uncertainty due to the scale setting dominates the total in the case of 𝑓D and
𝑓Ds and contributes to the error of the ratio via the definition of the physical point. The systematic
uncertainties are of a similar size as the statistical uncertainties, where the former is mostly due to
the uncertainty arising from the continuum limit extrapolation.

In figure 4, we compare our values with recent 𝑁f = 2 + 1 and 𝑁f = 2 + 1 + 1 determinations.
Only those results that consider all sources of systematic uncertainty in their analysis and pass
the quality criteria of the FLAG 21 review [25] (for the continuum limit, chiral and finite volume
extrapolations, renormalisation and the treatment of the heavy quark) are shown. We also only
display the latest results for each collaboration. Note that the ALPHA 23 study of Ref. [26] utilises
a small subset of the ensembles employed in the present analysis and we expect some statistical
correlation with our values. For the 𝑁f = 2+1 theory, our results are the most precise and represent
a significant improvement on earlier studies. All works are in reasonable agreement with each
other. FNAL/MILC [27] quote the smallest total uncertainties of around 0.3(0.2)% for 𝑓D( 𝑓Ds)
and 0.1% for 𝑓Ds/ 𝑓D, and their results dominate the FLAG average for 𝑁f = 2 + 1 + 1. At this level
of precision, the definition of isospin symmetric QCD has a significant impact on the values of the
decay constants. The FNAL/MILC results for the individual decay constants lie roughly 2𝜎 above
ours, while the results for the ratio are slightly more consistent.
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Figure 4: Comparison of lattice results for the decay constants 𝑓D and 𝑓Ds (top) and their ratio (bottom) for
𝑁f = 2 + 1 [26, 28–33] and 𝑁f = 2 + 1 + 1 [27, 34]. Only results that fulfil all the FLAG quality criteria and
that are not superseded by later works are displayed. The grey bands show the FLAG 21 averages from Ref.
[25].

5. Summary and outlook

We determine the leptonic decay constants of the D and Ds mesons in 2+1 flavour lattice QCD
with Wilson fermions. Utilising a large number of high statistics ensembles at six values of the
lattice spacing, which lie on three distinct quark mass trajectories covering a wide range of light
and strange quark masses enables us to achieve an excellent description of both the cutoff effects
and the quark mass dependence down to the physical point. We achieve a 0.5%, 0.7% and 0.3%
overall error in 𝑓Ds , 𝑓D and 𝑓Ds/ 𝑓D, respectively. These are the most precise 2 + 1 flavour results
to-date. Further improvement in the determination of the decay constants would require a more
precise evaluation of the scale, followed by a reduction in both the statistical and systematic errors.
However, once the uncertainties are reduced to the level of a few per mille, isospin-breaking effects,
as well as the absence of charm sea quarks, will need to be considered.
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