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Phase diagrams of some important theories like quantum chromodynamics (QCD), are only
accessible through numerical simulations with only finite degrees of freedom. Information about
critical phenomena can then only inferred through finite size scaling studies of various moments
of the order parameter. Alternatively, one can study the complex zeros of the grand canonical
partition function, known as Lee-Yang zeros, which are accessible as poles of the thermodynamic
variables. Moreover the temperature and volume scaling of these poles can be used as a probe
to understand the nature of phase transitions in many systems. We will discuss here the recent
progress that has been made in this direction with respect to the Roberge-Weiss transition, the
2D Ising model and the conjectured QCD critical point. We will further discuss results on the
universal location of Lee-Yang edge singularity from continuum extrapolated scaling function for
some $ (#) models in 3 − 3.
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1. Introduction

Our current understanding of the QCD phase diagram is incomplete because the theory is
strongly interacting at low energy scales on the one hand and direct lattice simulations are hindered
by the numerical sign problem at finite baryon chemical potentials `� on the other hand. The
only known information about the phase diagram is the nature of the phase transition between
the de-confined and the confined phase at vanishing chemical potential. This was shown to be a
crossover in [1], by performing direct simulations at zero `�. When attempting to deduce the nature
of phase transition, which only occur in the limit of infinite degrees of freedom in a system, from
finite volume lattice simulations we have to make use of finite size scaling (FSS) analysis. The
currently preferred method of doing this is based on studying Binder cumulants [2–4], relying on
the remnants of non-analyticities of thermodynamic observables in terms of observing the change
in peak heights and positions of susceptibilities.

In this proceedings, our goal is to show the power of an alternative approach, namely the Yang-Lee
formalism to infer properties of critical phenomena when only data from finite volume simulations
is available. T.D. Lee and C.N. Yang showed in [5, 6] that it is possible to infer the presence
and nature of phase transitions in a system by studying the volume and temperature scaling of the
complex zeros of the grand canonical partition function of the system. A current open problem
is the choice of method used to extract these zeros from lattice data. In the first part of this
proceedings, in Sections [2,3,4], we will show how to extract relevant zeros of the partition function
using a particular rational function re-summation of the baryon number density in 2+1 QCD and
magnetization of the 2D Ising model. In most theories of interest, these zeros called the Lee-Yang
zeros lie on well defined curves in the complex plane of the fugacity variable I = 4V`� in the
thermodynamic limit. These curves can be shown to be branch cuts terminating in branch points
known as Lee-Yang edge singularities (LYEs) [7] in certain conditions. In the next part of the
proceedings, in Section [5] , we will show how the Schofield parametrization [8] of the continuum
extrapolated scaling functions in $ (#) for # = {1, 2, 4} can be used to deduce the location LYEs
for the relevant universality classes. We will finally present the summary of these results with some
caveats and proposed future activities in Section [6].

2. Rational functions and Lee-Yang zeros

After motivating the advantage of studying Lee-Yang zeros at finite volume, we need to address
the question on how to obtain these from lattice data which usually comes with limited precision.
As we are aware, currently the only probe into the QCD phase diagram at finite densities is via
Taylor expansions at zero chemical potential [9, 10] and direct simulations at imaginary chemical
potential [11, 12] where there is no sign problem. Recently a number of re-summation schemes
have appeared which aim to combine these Taylor coefficients in one way or another for various
purposes. The method that we proposed in [13] can also be seen as a re-summation scheme which
aims to combine low order Taylor coefficients measured at various values of imaginary `� and
zero chemical potential to compute a rational function approximation of a given observable called
the “multi-point” Padé approximation. The method of combining many Taylor coefficients of a
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function into a single point Padé is not new. However, in this one needs precise information of
higher Taylor coefficients of the function, which is not accessible cost-wise to lattice simulations. In
the multi-point approach on the other hand, one can generate low order Taylor coefficients at many
points and obtain a higher order rational functions. The idea to apply this multi-point procedure on
lattice data originated from our work on Lefschetz thimble simulations of the 1+1 Thirring model
and Heavy-dense QCD in [14]. There we found that the closest pole from such a multi-point Padé
captured the true pole of the observables almost perfectly.

For the purposes of our analysis we use two types of Ansätze, the linear solver and the generalised
j2 approach. The construction of both of these are based on the assumption that we have access to
Taylor coefficients of the unknown function at some G8 ,

'<= (G8) =
%<(G8)

1 +&= (G8)
=

<∑
:=0

0: G
:
8

1 +
=∑
9=1

1 9 G
9

8

, (1)

Assuming that the function to be approximated is 5 (G8), the linear solver approach attempts to
determine the coefficients of the numerator and denominator of rational approximation by solving
the following equations simultaneously. Since this system can become ill-conditioned, we have also
solved this system in the fugacity variable, which reduces this ill-conditioning. Incorporating errors
on the Taylor coefficient is then a two step process, since we first add noise to the Taylor coefficients
and then solve for each such choice of coefficients.

%<(G8) − 5 (G8)&= (G8) = 5 (G8)
%′<(G8) − 5 ′(G8)&= (G8) − 5 (G8)& ′= (G8) = 5 ′(G8)

%′′<(G8) − 5 ′′(G8)&= (G8) − 5 (G8)& ′′= (G8) − 2 5 ′(G8)& ′= (G8) = 5 ′′(G8)
. . .

(2)

The other approach we have used to solve for the rational function is based on a generalised fitting
procedure, where we minimize the distance of the Taylor coefficients from the rational function
ansatz, weighted by the estimated error on the corresponding Taylor coefficient. This method
naturally encodes the error on the given Taylor coefficients.

j̃2 =
∑
9 ,:

| m
9'<=
mG 9
(G:) − 2 (:)9 |2

|Δ2 (:)
9
|2

. (3)

We find very good agreement on the rational functions obtained from both of thesemethods. Results
from both approaches and their comparison on the same data from our initial studies can be found
in [13].

Note on spurious poles : We only consider closest poles to the axis (real or imaginary depending
on what system one is studying) that are stable and have non-zero residue.
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3. Case study I : Lee-Yang zeros in the vicinity of the Roberge-Weiss transition

As a first test of the method to probe Lee-Yang zeros on lattice theories, we studied 2+1 flavour
QCD with physical quark masses at imaginary chemical potentials in [13], at temperatures close to
and below the Roberge-Weiss (RW) transition temperature on two lattices namely 243×4 and 363×6.
We simulated the system using highly improved staggered quarks (HISQ) [15] for the fermion action
and using Symanzik improved Wilson action for the gauge fields. Gauge field configurations were
generated using the SIMULATeQCD code from Bielefeld [16]. The RW transition temperature
has previously been determined using 243 × 4 lattice using the above mentioned discretization and
found to be around 201 MeV [17]. This provided us with a ballpark temperature to perform our
simulations, close to and below )', ∼ 201 MeV.

The quantity that we measured on the above lattices were the cumulants of the baryon number
density given by,

j1
� (), ˆ̀�) =

=� (), ˆ̀�)
)3 =

m (?(), ˆ̀�)/)4)
m ˆ̀�

∝ m ln /��
m ˆ̀�

(4)

Given the relation of j1
�
with /�� , we can infer the following : (i) Since /�� is periodic in

imaginary `� (`�
�
), j1

�
is also periodic, (ii) j1

�
is odd in imaginary `�

�
, (iii) Zeros of the partition

function will show up as poles of j1
�
. These properties make j1

�
a good candidate to choose as our

function to be approximated by the multi-point Padé approach. The results of the approximation
and the singularity structure can be found in [13, 18–20]. Here we will only show the results for the
scaling of the closest poles to the `�

�
axis in Fig. 1.

The ansatz that we use for the expected trajectory of the Lee-Yang zeros is given by recognizing
that in terms of the scaling variable I = C

ℎ1/VX , the location of the edge singularity is a branch point
of the singular part of the scaling function and hence it can be used to study the dependence of C
and ℎ, which are the relevant scaling fields of the Ising model. In terms of this, after choosing a
map from the Ising model fields to the scaling fields of the RW transition, one can write,

I = I2 ≡ |I2 |48 c/(2VX) (5)

where the phase of the YLE is determined by demanding that for the Ising model, all Lee-Yang
zeros lie on the imaginary external magnetic field ℎ axis. Using the following map between the
Ising model and RW fields,

C = C−1
0

(
)', − )
)',

)
, (6)

ℎ = ℎ−1
0

(
ˆ̀� − 8c
8c

)
, (7)

where ˆ̀� = `�/) and C0, ℎ0, and )', are nonuniversal parameters. We now can solve C/ℎ1/VX ≡
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Figure 1: RW scaling (Figure from [19]) : Scaling of the real part of the closest poles to the axis for for
#g = 4 & 6. Fit : `'

�
= 0. [()� − )) /)� ]VX

I2 = |I2 |48
c

2VX for ˆ̀� to obtain,

ˆ̀'!. = ±c
(
I0
|I2 |

)VX (
)', − )
)',

)VX
, (8)

ˆ̀�!. = ±c , (9)

where the normalization constant I0 is defined as I0 = ℎ1/VX
0 /C0. Here Eqs (8) and (9) define the

temperature scaling of the Lee-Yang edge singularity, associated with the RW critical point. The
scaling is shown in Fig. 1 and the results for the fit are shown in Table 1. The next step is continuum
extrapolation of the RW transition temperature for which simulations are underway. For some
preliminary finite size scaling results for this analysis see [20]. Some new results for extrapolating
to the real `� axis have also recently been done by us [21], which also gives us a rough estimate
for the critical end point (CEP), conjectured to appear in the QCD phase diagram.

#g 0 )� j2 I0

4 22.66 (2.18) 206.12 (2.67) 0.61 8.68 (84)
6 26.085 (5) 208.704 (2) 0.000324 8.696 (2)

Table 1: Fit parameters obtained for the expected scaling of the LYEs for the RW transition.

4. Critical exponents of 2D Ising model via Lee-Yang zero analysis

A further test of the method was performed on extracting the critical exponents for the 2D
Ising model by us in [22]. This theory is, on the one hand fully solved due to Onsager, and on the
other hand rich enough to show a phase transition. Therefore it is a good model for testing new
methods aimed at understanding critical phenomena on finite lattice volumes. We can perform a
self-consistent study using the complex partition function zeros in the inverse temperature V and
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external magnetic field � planes, to determine the critical temperature, critical exponents a, and
exponent product VX. For this study we have performed two kinds of simulations : (i) Setting
� = 0 and computing the poles of the specific heat in the complex V plane. These are known in
the literature as Fisher zeros [7]. The finite size scaling of the closest Fisher zero to the real V axis
allows us to determine the critical inverse temperature V2 and the critical exponent a. (ii) Once
we determine the critical temperature, one can perform simulations at )2 = 1/V2 , with the external
magnetic field turned on and determine the volume scaling of the closest Lee-Yang zeros. This
scaling allows us to determine the gap exponent VX.

For the 2D Ising model simulations performed in [22], we use the cluster spin flip algorithm based
on [23], since it is well known that this type of algorithm does not suffer from critical slowing down,
allowing us to obtain statistically independent configurations. From the simulations we compute
the following quantities : average magnetization 〈"〉, average energy density 〈�〉 and the specific
heat capacity (at � = 0) �� =

(
m�
m)

)
�=0

for different lattice volumes. We then use the multi-point
Padé approximation to approximate �� and extract the closest stable poles V0 (Fisher zeros) to the
real V axis. These can be shown to have the following finite volume scaling [24],

|V0 − V2 | ∝ !−1/a (10)

We further approximate 〈"〉 by the multi-point Padé approximation and extract the stable pole, this
time in the complex external magnetic field plane, closest to the real � axis, �0. We repeat this
procedure for different lattice volumes and fit the poles according to the following scaling ansatz
[24, 25]

|�0 − �2 | ∝ !V/a−3 (11)

The results of the fits for the Lee-Yang scaling with volume is shown in Fig. 2 and the results from
the fits for the relevant exponents are shown in Table. 2. All calculation details and fits can be found
in [22].

Quantity Fit Results Exact value j2/dof
a 1.014(60) 1 1.3
V2 0.4404(19) ∼ 0.4407 1.44
VX 1.881(93) 1.875 1.2

Table 2: Results for the fits for critical inverse temperature V2 , the exponent a, and the gap exponent VX.

5. Universal location of LYE from continuum extrapolated scaling function in 3d
O(N) model

In the thermodynamic limit the Lee-Yang zeros coalesce into branch cuts terminating at Yang-
Lee edge singularities (YLE). These YLEs also mark the branch points of the scaling function in the
symmetric phase. Although the phase of these branch points can be determined by the underlying
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Figure 2: Finite size scaling of Im(�0), (Figure from [22]). The value obtained from fits is V/a− 3 = −VX =
−1.881(93), as shown in Table 2, which also gives V = 0.119(93).

universality class having the Lee-Yang zeros lie entirely on the imaginary external magnetic field
axis, there is currently no analytical way to deduce the absolute value of these branch points. Re-
cently, for some $ (#) theories, the value has been determined by the Functional Renormalisation
Group (FRG) approach [26, 27]. Using continuum extrapolated results from Monte Carlo studies
of the scaling functions for $ (#) models for # = {1, 2, 4} in [28], we have in [29] determined the
location of these singularities for the first time from lattice simulated data.

As mentioned, for our analysis we have made use of data on continuum extrapolated infinite volume
scaling functions from [28]. Here the authors have performedMonte-Carlo simulations of improved
q4 models in which parameters can be tuned to specify the universality class between $ (1), $ (2)
and$ (4). Near criticality, the free energy is dominated by its singular part (denoted below as 5 (I))
which can be expressed as a function of a single variable I = C

ℎ1/VX , called the scaling variable.
Here the reduced temperature C and the external magnetic field ℎ are the two relevant scaling fields
for the Ising transition. Schofield in [30] introduced a new parametrization in terms of new scaling
fields A and \,

" = <0A
V\ , C = A (1 − \2) , ℎ = ℎ0A

VXℎ(\) , (12)

with " denoting the magnetization, such that the entire scaling-law behaviour is contained in A
which can be seen to be a radial coordinate. In the above ℎ(\) is a polynomial ansatz. Using this
parametrization, we can express the scaling functions and the scaling variable as,

5� (\ (I)) = −
m 5

mℎ
ℎ−1/X = \

(
ℎ(\)
ℎ(1)

)−1/X
, I(\) = 1 − \2

\2
0 − 1

\
1/V
0

(
ℎ(\)
ℎ(1)

)−1/VX
(13)

Further demanding that at the Lee-Yang edge singularity, m 5
m\
→ ∞, we can obtain the location of

the edge by solving the following equation,

3I(\)
3\

= 0 ⇔ 0 = 2VX\ℎ(\) −
(
\2 − 1

)
ℎ′(\) (14)
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Here wewill only list the most important findings of the paper [29] in Table. 3. However, an in-depth
analysis has been performed in the paper explicitly showing regions where the map between I → \

is invertible and well defined. We also explicitly calculate the jump in the scaling function along
the branch cut originating from the LYE which is consistent with theoretical expectations.

Table 3: Comparison of |I!. | values from Lattice data and FRG results for $ (1), $ (2), and $ (4). The
value for $ (1), $ (2) agree within errors whereas the value for $ (4) differs by about 15% The FRG results
can be found in [26, 27].

Approach $ (1) $ (2) $ (4)
Lattice 2.429(56) 1.95(7) 1.47(3)
FRG 2.43(4) 2.04(8) 1.69(3)

6. Conclusions and Outlook

The goal of this talk and subsequent proceedings was to show how one can extract Lee-Yang
zeros and edge singularities from lattice simulations. In the first part, multi-point Padé was shown
to be successful in extracting the relevant Yang-Lee zeros associated with the RW transition. From
the temperature scaling studies of these zeros, the correct transition temperature was recovered for
#g = 4, which had been previously determined from independent lattice simulations. Further the
transition was shown to be consistent with the 33 − /2 universality class, which has also been seen
in earlier studies. The method was then applied to the 2D Ising model and based on the volume
scaling of the closest poles of the magnetization and specific heat, the transition temperature V2 and
the critical exponents a andVX were reproduced with very good precision. For the second part, in
another type of study involving continuum extrapolated lattice data available on the infinite volume
scaling functions for $ (1), $ (2) and $ (4) universality classes, the universal location of the LYE
was computed and shown to be consistent with FRG results (except for the $ (4) class, where a
difference of about ∼ 15% was observed).

The future plans for this work include obtaining continuum extrapolated results for the RW transi-
tion by simulating #g = 8 lattice volumes. Recently we have used this method also to probe low
temperatures and some results have been put forward by us based on obtaining an estimate for the
CEP [21]. This is not without caveats for three main reasons : (i) Rigorous results on the scope
of validity of such multi-point Padé don’t yet exist, all information is currently based on numerical
experiments performed by our group. (ii) Since we can only perform simulations at `� = 0 or
purely imaginary `�, any estimate for the CEP is an extrapolation. It is not yet clear what the effect
of a small scaling window will be on these results. (iii) On the lattice we have to deal with both
finite volume and cut-off effects, while finite volume effects in themselves are not a big problem as
we know the finite size scaling laws for these LYEs, the inter-dependence of these limits for any
lattice computation can potentially cause problems as not enough research on the cut-off effects
for these LY zeros exists. For the latter work on obtaining the universal location of LYE from
lattice data, there are not many caveats and the work is mostly self-consistent. However different,
non-polynomial Ansätze, for ℎ(\) can be considered such that we can deduce information like
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the critical exponent associated to the LYE, namely the “edge” exponent. With this we hope that
we were able to convince the reader to try both the Lee-Yang approach to study phase transitions
and the multi-point Padé method to extract them in their research. We further hope that we have
provided evidence that continuum lattice studies can give consistent results on critical phenomena
when compared to more direct approaches like FRG.

Acknowledgments : This work was supported (i) by the European Union’s Horizon 2020 re-
search and innovation program under the Marie Sklodowska-Curie Grant Agreement No. H2020-
MSCAITN-2018-813942 (EuroPLEx), (ii) by The Deutsche Forschungsgemeinschaft (DFG, Ger-
man Research Foundation) - Project number 315477589-TRR 211 and the PUNCH4NFDI con-
sortium supported by the Deutsche Forschungsgemeinschaft (DFG, German Research Foundation)
with project number 460248186 (PUNCH4NFDI). (iii) I.N.F.N. under the research project i.e.
QCDLAT. This research benefited from computing resources made available through the Bielefeld
GPU cluster and the University of Parma on the UNIPR HPC facility.

References

[1] Y. Aoki, G. Endrodi, Z. Fodor, S.D. Katz and K.K. Szabo, The Order of the quantum
chromodynamics transition predicted by the standard model of particle physics, Nature 443
(2006) 675 [hep-lat/0611014].

[2] K. Binder, Critical Properties from Monte Carlo Coarse Graining and Renormalization,
Phys. Rev. Lett. 47 (1981) 693.

[3] K. Binder, Finite size scaling analysis of Ising model block distribution functions, Z. Phys. B
43 (1981) 119.

[4] K. Binder and D.P. Landau, Finite-size scaling at first-order phase transitions, Phys. Rev. B
30 (1984) 1477.

[5] C.N. Yang and T.D. Lee, Statistical theory of equations of state and phase transitions. i.
theory of condensation, Phys. Rev. 87 (1952) 404.

[6] T.D. Lee and C.N. Yang, Statistical theory of equations of state and phase transitions. ii.
lattice gas and ising model, Phys. Rev. 87 (1952) 410.

[7] M.E. Fisher, Yang-Lee Edge Singularity and phi**3 Field Theory, Phys. Rev. Lett. 40 (1978)
1610.

[8] P. Schofield, Parametric representation of the equation of state near a critical point, Phys.
Rev. Lett. 22 (1969) 606.

[9] C.R. Allton, S. Ejiri, S.J. Hands, O. Kaczmarek, F. Karsch, E. Laermann et al., The QCD
thermal phase transition in the presence of a small chemical potential, Phys. Rev. D 66
(2002) 074507 [hep-lat/0204010].

9

https://doi.org/10.1038/nature05120
https://doi.org/10.1038/nature05120
https://arxiv.org/abs/hep-lat/0611014
https://doi.org/10.1103/PhysRevLett.47.693
https://doi.org/10.1007/BF01293604
https://doi.org/10.1007/BF01293604
https://doi.org/10.1103/PhysRevB.30.1477
https://doi.org/10.1103/PhysRevB.30.1477
https://doi.org/10.1103/PhysRev.87.404
https://doi.org/10.1103/PhysRev.87.410
https://doi.org/10.1103/PhysRevLett.40.1610
https://doi.org/10.1103/PhysRevLett.40.1610
https://doi.org/10.1103/PhysRevLett.22.606
https://doi.org/10.1103/PhysRevLett.22.606
https://doi.org/10.1103/PhysRevD.66.074507
https://doi.org/10.1103/PhysRevD.66.074507
https://arxiv.org/abs/hep-lat/0204010


P
o
S
(
E
u
r
o
P
L
E
x
2
0
2
3
)
0
2
5

Lee-Yang zeros from Lattice simulations Simran Singh

[10] R.V. Gavai and S. Gupta, Pressure and nonlinear susceptibilities in QCD at finite chemical
potentials, Phys. Rev. D 68 (2003) 034506 [hep-lat/0303013].

[11] P. de Forcrand and O. Philipsen, The QCD phase diagram for small densities from imaginary
chemical potential, Nucl. Phys. B 642 (2002) 290 [hep-lat/0205016].

[12] M. D’Elia and M.-P. Lombardo, Finite density QCD via imaginary chemical potential, Phys.
Rev. D 67 (2003) 014505 [hep-lat/0209146].

[13] P. Dimopoulos, L. Dini, F. Di Renzo, J. Goswami, G. Nicotra, C. Schmidt et al., Contribution
to understanding the phase structure of strong interaction matter: Lee-Yang edge
singularities from lattice QCD, Phys. Rev. D 105 (2022) 034513 [2110.15933].

[14] F. Di Renzo, S. Singh and K. Zambello, Taylor expansions on lefschetz thimbles, Phys. Rev.
D 103 (2021) 034513.

[15] HPQCD, UKQCD collaboration, Highly improved staggered quarks on the lattice, with
applications to charm physics, Phys. Rev. D 75 (2007) 054502 [hep-lat/0610092].

[16] HotQCD collaboration, SIMULATeQCD: A simple multi-GPU lattice code for QCD
calculations, Comput. Phys. Commun. 300 (2024) 109164 [2306.01098].

[17] J. Goswami, F. Karsch, A. Lahiri, M. Neumann and C. Schmidt, Critical end points in
(2+1)-flavor QCD with imaginary chemical potential, PoS CORFU2018 (2019) 162
[1905.03625].

[18] Bielefeld-Parma collaboration, Lee-Yang edge singularities in lattice QCD : A systematic
study of singularities in the complex `� plane using rational approximations., PoS
LATTICE2021 (2022) 544 [2111.06241].

[19] C. Schmidt, D.A. Clarke, P. Dimopoulos, J. Goswami, G. Nicotra, F. Di Renzo et al.,
Detecting critical points from Lee-Yang edge singularities in lattice QCD, in 29th
International Conference on Ultra-relativistic Nucleus-Nucleus Collisions, 9, 2022
[2209.04345].

[20] F. Di Renzo, D.A. Clarke, P. Dimopoulos, J. Goswami, C. Schmidt, S. Singh et al., Detecting
Lee-Yang/Fisher singularities by multi-point Padé, PoS LATTICE2023 (2024) 169
[2401.09619].

[21] D.A. Clarke, P. Dimopoulos, F. Di Renzo, J. Goswami, C. Schmidt, S. Singh et al., Searching
for the QCD critical endpoint using multi-point Padé approximations, 2405.10196.

[22] S. Singh, M. Cipressi and F. Di Renzo, Exploring Lee-Yang and Fisher zeros in the 2D Ising
model through multipoint Padé approximants, Phys. Rev. D 109 (2024) 074505
[2312.03178].

[23] C. Destri, F. Di Renzo, E. Onofri, P. Rossi and G. Tecchiolli, Swendsen-wang monte carlo
study of the ising model with external field, Physics Letters B 278 (1992) 311.

10

https://doi.org/10.1103/PhysRevD.68.034506
https://arxiv.org/abs/hep-lat/0303013
https://doi.org/10.1016/S0550-3213(02)00626-0
https://arxiv.org/abs/hep-lat/0205016
https://doi.org/10.1103/PhysRevD.67.014505
https://doi.org/10.1103/PhysRevD.67.014505
https://arxiv.org/abs/hep-lat/0209146
https://doi.org/10.1103/PhysRevD.105.034513
https://arxiv.org/abs/2110.15933
https://doi.org/10.1103/PhysRevD.103.034513
https://doi.org/10.1103/PhysRevD.103.034513
https://doi.org/10.1103/PhysRevD.75.054502
https://arxiv.org/abs/hep-lat/0610092
https://doi.org/10.1016/j.cpc.2024.109164
https://arxiv.org/abs/2306.01098
https://doi.org/10.22323/1.347.0162
https://arxiv.org/abs/1905.03625
https://doi.org/10.22323/1.396.0544
https://doi.org/10.22323/1.396.0544
https://arxiv.org/abs/2111.06241
https://arxiv.org/abs/2209.04345
https://doi.org/10.22323/1.453.0169
https://arxiv.org/abs/2401.09619
https://arxiv.org/abs/2405.10196
https://doi.org/10.1103/PhysRevD.109.074505
https://arxiv.org/abs/2312.03178
https://doi.org/https://doi.org/10.1016/0370-2693(92)90199-E


P
o
S
(
E
u
r
o
P
L
E
x
2
0
2
3
)
0
2
5

Lee-Yang zeros from Lattice simulations Simran Singh

[24] A. Deger and C. Flindt, Determination of universal critical exponents using lee-yang theory,
Phys. Rev. Res. 1 (2019) 023004.

[25] C. Itzykson, R.B. Pearson and J.B. Zuber, Distribution of Zeros in Ising and Gauge Models,
Nucl. Phys. B 220 (1983) 415.

[26] G. Johnson, F. Rennecke and V.V. Skokov, Universal location of Yang-Lee edge singularity in
classic O(N) universality classes, Phys. Rev. D 107 (2023) 116013 [2211.00710].

[27] F. Rennecke and V.V. Skokov, Universal location of Yang–Lee edge singularity for a
one-component field theory in 1≤d≤4, Annals Phys. 444 (2022) 169010 [2203.16651].

[28] F. Karsch, M. Neumann and M. Sarkar, Scaling functions of the three-dimensional Z(2),
O(2), and O(4) models and their finite-size dependence in an external field, Phys. Rev. D 108
(2023) 014505 [2304.01710].

[29] F. Karsch, C. Schmidt and S. Singh, Lee-Yang and Langer edge singularities from analytic
continuation of scaling functions, Phys. Rev. D 109 (2024) 014508 [2311.13530].

[30] P. Schofield, Parametric Representation of the Equation of State Near A Critical Point, Phys.
Rev. Lett. 22 (1969) 606.

11

https://doi.org/10.1103/PhysRevResearch.1.023004
https://doi.org/10.1016/0550-3213(83)90499-6
https://doi.org/10.1103/PhysRevD.107.116013
https://arxiv.org/abs/2211.00710
https://doi.org/10.1016/j.aop.2022.169010
https://arxiv.org/abs/2203.16651
https://doi.org/10.1103/PhysRevD.108.014505
https://doi.org/10.1103/PhysRevD.108.014505
https://arxiv.org/abs/2304.01710
https://doi.org/10.1103/PhysRevD.109.014508
https://arxiv.org/abs/2311.13530
https://doi.org/10.1103/PhysRevLett.22.606
https://doi.org/10.1103/PhysRevLett.22.606

	Introduction
	Rational functions and Lee-Yang zeros
	Case study I : Lee-Yang zeros in the vicinity of the Roberge-Weiss transition
	Critical exponents of 2D Ising model via Lee-Yang zero analysis
	Universal location of LYE from continuum extrapolated scaling function in 3d O(N) model
	Conclusions and Outlook

