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The observed baryon asymmetry in the universe cannot be reconciled with the current form of the
Standard Model (SM) of particle physics. The amount of CP-violation stemming from the Cabibbo-
Kobayashi-Maskawa matrix is not sufficient to explain the observed matter-antimatter asymmetry.
The electric dipole moment (EDM) of the neutron offers a unique opportunity to discover physics
beyond the SM (BSM) due to its significantly suppressed CP-violating contribution from the SM.
After a brief summary of the current status for experimental searches of a neutron EDM, I introduce
the various sources of CP-violation and the computational challenges associated with calculating
the corresponding hadronic matrix elements using the lattice as a regulator of QCD. I then
describe recent calculations of the nucleon EDM induced by the theta term and recent progress on
the calculation of the BSM contributions to the EDM. The numerical and theoretical developments
of the last few years are paving the way to a new generation of lattice QCD computation that will
provide invaluable information when the next generation of EDM searches will produce their first
results.
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1. Matter-antimatter asymmetry

The symmetry of masses and decay rates between particles and their antiparticles is a funda-
mental result of the CPT invariance theorem. However, contrary to expectations of equal particle
and antiparticle densities, observations reveal a stark dominance of matter over antimatter in the
Universe. A useful parameter to describe this asymmetry is η = nB

nγ
with nB = nb − n

b
, where nb

and n
b

denote the densities of baryons and antibaryons, respectively, and nγ represents the photon
density.
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Figure 1: Predicted primordial abundances of light
nuclei, including 4He, D, 3He, and 7Li, as functions of
the baryon-to-photon ratio η according to standard Big-
Bang nucleosynthesis (BBN). Shaded bands show 95%
confidence levels. Experimental results are in yellow,
while vertical bands indicate the CMB-inferred baryon
density (narrow band) and the concordance range for
BBN predictions (wider band). Figure taken from
Ref. [1].

The parameter η can be determined by
comparing the observed and predicted abun-
dances of light elements under the standard Big
Bang Nucleosynthesis (BBN) model. Assum-
ing a fixed neutrino count, BBN predicts the
relative abundances of D, 3He, 4He, and 7Li
as functions of η. Experimental measurements
of these abundances allow for the inference of
η. Figure 1 illustrates these predictions with
95% confidence level bands [1]. Recent analy-
ses incorporating Planck data are discussed in
Ref. [2].

Excluding lithium abundance1, the values
of η obtained from D and 4He abundances
are consistent. Based on recent D/H abun-
dance measurements [3], η is constrained to
5.8 × 10−10 < η < 6.3 × 10−10 [1, 2].

An independent determination of η comes
from measurements of the Cosmic Microwave
Background (CMB) angular power spec-
trum [4]. The latest Planck data analysis reports
η = (6.12 ± 0.04)×10−10 [5], which agrees well
with the BBN-based values.

Irrespective of the underlying particle
physics mechanism for baryon asymmetry,
three key conditions, known as the Sakharov
criteria [6], must be fulfilled: violation of
baryon number conservation, C- and CP-
symmetry breaking, and a departure from ther-
mal equilibrium to prevent the asymmetry from being erased by thermal averaging.

The CP-violation in the Standard Model (SM) originating from the Cabibbo-Kobayashi-
Maskawa (CKM) matrix [7, 8], involving a product of mixing angles, results in an effect as
small as 10−20[9–11], which is insufficient to account for the baryon asymmetry observed in the

1The mismatch in η values derived from lithium abundance compared to other elements is known as the lithium
problem.

2



P
o
S
(
E
u
r
o
P
L
E
x
2
0
2
3
)
0
2
4

Electric dipole moments: a gateway to new physics Andrea Shindler

Universe. This limitation has led to significant interest in baryogenesis mechanisms beyond the
Standard Model (BSM)[12].

2. Electric dipole moments and new physics

The intrinsic electric dipole moment (EDM) d of a system, as dictated by the Wigner-Eckart
theorem, must be aligned with its angular momentum, d = d ⟨J⟩. For a spin-1/2 particle described
by the field ψ interacting with the electromagnetic field Fµν, the Lagrangian in Minkowski space is
given by [13]

L = −µψσµνFµνψ − idψγ5σ
µνFµνψ,, (1)

where µ represents the magnetic moment. The second term in Eq. (1), associated with the EDM,
d, explicitly breaks parity (P) and time-reversal (T) symmetries.

The intrinsic EDM serves as a fundamental probe for uncovering CP-violation, regardless of
whether its origin lies within the SM or comes from BSM physics, with potential links to the baryon
asymmetry of the Universe. This task necessitates probing EDMs across various systems together
with significant theoretical advancements. The ability to detect new physics through EDM searches
depends on improving experimental sensitivity across multiple systems, as different sources of CP
violation may produce distinct hierarchies and patterns of EDMs. The reach of EDM experiments
can be estimated by the energy scale they probe under the assumption of maximal CP violation.
Current estimates suggest that EDMs are sensitive to extremely high energy scales, venturing into
unexplored domains of physics [14]. If instead new physics is situated near the electroweak scale,
EDM measurements remain invaluable by probing minuscule CP-violating couplings.

2.1 The neutron electric dipole moment

The global effort to measure the neutron electric dipole moment (nEDM) has made significant
progress, with multiple experiments underway. The PSI collaboration has implemented key im-
provements, and in 2020, published a new nEDM measurement of (0.0± 1.1stat ± 0.2sys) × 10−26 e ·
cm [15], achieving a fivefold reduction in systematic errors along with moderate statistical gains.
Their next-generation n2EDM apparatus, featuring a double-chamber spin precession design first
implemented by the PNPI experiment [16], is currently under development. Other major efforts
include the double-chamber nEDM experiment at PNPI using the ILL turbine source [16], the
panEDM experiment utilizing the SuperSUN source at ILL [17], the TUCAN experiment employ-
ing the TRIUMF superfluid helium UCN source [18], and the LANL nEDM experiment [19]. Over
the next decade, experimental advancements aim to improve the current nEDM sensitivity by one
to two orders of magnitude, as shown by the steady progress in Fig. 2 (see Ref. [14] for a recent
summary).

3. CP-violating sources and role of lattice QCD

The SM provides two sources of CP violation: the CKM matrix phase and the θ term in the QCD
Lagrangian. The CKM matrix contributes to quark EDMs through a two-loop process [20, 21]. For
the nEDM, the leading CKM contribution originates from a ∆S = 1 CP-violating penguin diagram

3
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Figure 2: Temporal progression of neutron EDM measurements and anticipated sensitivity improvements.
Figure taken from Ref. [14].

(Fig. 3, left). This CP-violating interaction combines with a CP-conserving ∆S = 1 process via a
one-loop mechanism, with an enhancement from chiral logarithms (Fig. 3, right).

Recent estimates place the CKM-induced nEDM at dCKM
n = 1 − 6 × 10−32 e cm [22], with

uncertainties arising from hadronic effects. This value is approximately six orders of magnitude
below the current experimental sensitivity (see Sec. 2.1). As a result, any near-future measurement
of the nEDM would provide a definitive signal of new BSM physics.

The flavor-diagonal CP-odd θ term offers a natural source of CP violation. In Minkowski
space, the QCD Lagrangian with the θ term for Nf = 3 quark flavors and a diagonal mass matrix
M is expressed as:

LQCD+θ̄ = −1
4

Ga
µνGa,µν + ψ̄(iD/ − M)ψ − θ̄ g2

64π2 ϵ
µναβGa

µνGa
αβ , (2)

where Dµ is the covariant derivative, ψ = (u, d, s)T represents the quark fields, and Ga
µν denotes

the gluon field tensor. Here, ϵ0123 = +1 is the fully antisymmetric tensor, and the CP-violating
operator, known as the θ term, is proportional to the coupling θ̄.

The parameter θ̄ depends on the chosen basis, with the quark mass matrix made real by
absorbing its complex phase into a redefined coupling θ̄ = θ + arg det(M). This basis aligns with
lattice QCD (LQCD) calculations, where the θ term corresponds to a CP-violating pure gauge
operator.

Beyond the θ term in the QCD Lagrangian, new CP-violating effects can arise from a general
BSM theory introducing heavy particles at a scale ΛBSM. Below this scale, the effects of these
heavy states can be described by effective local operators constructed from SM fields. Operators
not present in the SM appear as higher-dimensional terms suppressed by powers of 1/ΛD−4

BSM, where
D is the operator’s dimension. For a detailed discussion of CP-violating operators, see Ref. [23].

4
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Figure 3: Left: A CP-violating ∆S = 1 penguin diagram. Right: The CP-violating ∆S = 1 operator interacts
with a CP-conserving ∆S = 1 coupling. The crossed circle indicates the effective��CP operator derived from
the penguin diagram on the left, contributing to the CKM-induced neutron EDM.

Focusing on dimension-6 operators, the effective Lagrangian is:

Leff
BSM =

1
Λ2

BSM

∑
i

C(6)
i O(6)

i , (3)

where C(6)
i are Wilson coefficients and O(6)

i are the corresponding operators. After electroweak
symmetry breaking, the Higgs field is replaced by its vacuum expectation value, resulting in
operators amenable to lattice QCD (LQCD) calculations.

Key operators contributing to the EDM include the quark-chromo EDM (qCEDM), the CP-
violating three-gluon operator (also known as the gluon-chromo EDM, or gCEDM), and specific
four-fermion operators. The qCEDM operator is given by:

OqC(x) = −i
∑
f

ψ f (x)γ5σ
µνGµνψf (x) , (4)

where Gµν is the gluon field tensor and ψf represents the quark field of flavor f . The gCEDM
operator is expressed as:

OgC(x) =
1
3

f ABCG̃A,µνGB
µρGC ,ρ

ν , (5)

where G̃µν = 1/2εµναβGαβ is the dual gluon field tensor. Four-fermion operators are categorized
into semi-leptonic (containing two quark and two lepton fields) and purely hadronic (four-quark)
types, though no lattice QCD results for these operators exist at present.

The role of LQCD calculations is to provide renormalized hadronic matrix elements of CP-
violating operators. These matrix elements are critical inputs for disentangling and constraining
contributions to any experimentally observed EDM. The nucleon EDM, incorporating contributions
from both the θ term and BSM sources, can be parametrized as:

dN = Mθ
Nθ̄ +

(
v

ΛBSM

)2 ∑
i

M (i)
N d̃i , (6)

where Mθ
N and M (i)

N are the LQCD-calculated matrix elements for the θ term and dimension-
6 operators, respectively. Here, d̃i represents contributions from Wilson coefficients, and v is
the Higgs vacuum expectation value. Perturbative methods determine d̃i, while non-perturbative
techniques focus on M (i,θ)

N . The importance of a LQCD calculation can be exemplified using the

5
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Figure 4: Left: correlation between the neutron EDM and the proton EDM assuming that only the θ term
contributes (gray), and the MSSM (red), dominated by the qCEDM operator at hadronic scales. The width
of the bands indicate the uncertainty in the ratios arising from hadronic matrix elements. Right: same as left
plot for the neutron EDM and the 225Ra EDM. Plots taken from Ref. [24].

phenomenological analysis of Ref. [24], where the impact of the uncertainty in the theoretical
EDM estimate has been correlated between several systems and several CP-violating sources. The
plots of Fig. 4 show the correlation between the nEDM and the proton EDM (left plot) and the
225Ra EDM (right plot). The grey band represents the scenario in which the θ term is the solely
source of CP-violation while the red band represents the correlation from a minimal supersymmetric
model (MSSM) where the dominant contribution comes from the qCEDM operator. In the case of
the neutron and proton systems becomes critical to reduce the uncertainy of the hadronic matrix
element which is responsible for the width of the grey band. Only in this case experimental
measurements could actually provide information on the source of CP-violation. Analogously the
LQCD community should start delivering a precise determination for the qCEDM in the nucleon
system, while the width of the red band is currently given by the uncertainty estimated from QCD
sum rules determinations [24]. For a review of recent lattice QCD results on EDMs, see Ref. [25].

4. Electric dipole moment form lattice QCD

To determine the EDM of a nucleon N , it is necessary to evaluate the hadronic matrix element
in a CP-violating vacuum〈

N(p′, s′)|Jem
µ |N(p, s)

〉
��CP
= uN (p′, s′)Γ��CP

µ (q2)uN (p, s) , (7)

where Jem
µ is the electromagnetic current, and p (p′) and s (s′) represent the nucleon momentum

and spin, respectively. For a small CP-violating coupling g̃ (e.g., θ̄ in the case of the theta term),
the matrix element can be expressed in terms of CP-even form factors F1(q2) and F2(q2), and the
CP-odd form factor F3(q2)

Γ��CP
µ (q2) = F1(q2)γµ +

i
2MN

F2(q2)σµνqν + g̃
i

2MN
F3(q2)σµνγ5qν . (8)

The nucleon EDM is extracted from the CP-odd form factor F3(q2) at zero recoil (q = p′ − p) via
the relation dN =

F3(0)
2MN

g̃.

6
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Figure 5: Left: Dependence of the CP-violating form factor F3(Q2) on the momentum transfer Q2, illustrating
the difference between correlation functions with (blue data and band) and without (red data and band)
signal-to-noise ratio improvements. Right: values of F3(Q2) determined for various flow times at which the
topological charge is evaluated.

Several approaches are available to compute the matrix element in Eq. (7). These include the
background field method [26], and analytical continuation to imaginary CP-odd coupling, as applied
to the theta term in Ref. [27]. In the next section, we focus on a perturbative expansion in the CP-odd
coupling. This method involves evaluating the three-point function of the electromagnetic current
between nucleon interpolators, with the CP-odd operator integrated over the entire space-time
volume L3 × T .

4.1 Electric dipole moment from the θ term

To compute the contribution of the θ term to the nucleon EDM (nucleon θEDM) using lattice
QCD, it is essential to have a theoretically and numerically robust definition of the topological
charge density. The gradient flow (GF) for gauge fields [28] provides such a definition, offering a
well-defined continuum limit while remaining free from ultraviolet (UV) divergences at positive
flow time, t > 0. Additionally, the topological charge remains independent of the flow time [28, 29],
simplifying the evaluation of the θ term contribution. It is sufficient to compute the topological
charge at positive flow time and then take the continuum limit of the CP-odd form factor to determine
the EDM.

Resolved the UV issues leave the challenge of improving the signal-to-noise ratios of the relevant
lattice correlation functions. Various methods have been proposed to address this, most focusing
on isolating space-time regions where the signal is exponentially suppressed and discarding these
regions to reduce noise in the correlation functions. Examples of these techniques are discussed in
Refs. [30–35].

In Ref. [33], a method was developed following similar principles, enabling the determination
of CP-odd form factors. The left plot in Fig. 5 illustrates the Q2 dependence of the CP-odd form
factor, shown both before and after signal-to-noise improvement. The right plot demonstrates the
expected flow-time independence within the hadronic region, 0.6 fm <

√
8t < 0.7 fm.

A study of the pion mass dependence has given a nEDM of dn = −0.00152(71) θ e fm.
Combined with current experimental bounds, this result constrains the θ parameter to |θ | < 1.98 ×
10−10 at 90% confidence level. Furthermore, the pion mass dependence of the nEDM provides
an estimate for the CP-odd coupling, gθ0 = −1.28(64) · 10−1 θ. This value agrees well with an

7



P
o
S
(
E
u
r
o
P
L
E
x
2
0
2
3
)
0
2
4

Electric dipole moments: a gateway to new physics Andrea Shindler

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014
a2[fm2]

0.005

0.004

0.003

0.002

0.001

0.000

0.001
d n

[e
fm

]
tsep 1.1fm, dn = 0.00083(50)
tsep 1.3fm, dn = 0.00017(90)

0.000 0.002 0.004 0.006 0.008 0.010 0.012 0.014
a2[fm2]

0.00030

0.00025

0.00020

0.00015

0.00010

0.00005

0.00000

0.00005

0.00010

0.00015

S n
[e

fm
3 ]

tsep 1.1fm, Sn = 0.000026(35)
tsep 1.3fm, Sn = 0.000064(70)

Figure 6: Continuum limit of the nEDM (left plot) and the neutron Schiff moment (right plot) both induced
by the θ term. Different colors represent different physical separation, tsep, between the nucleon interpolators.

independent determination [36] based on lattice QCD calculations of neutron-proton mass splitting
from QCD isospin breaking effects, gθ0 = −1.47(23) · 10−1 θ. The consistency of these results
reinforces the reliability of the nEDM estimates and the pion mass dependence analysis.

Major systematics of this calculation are the study of lighter pion masses closer to the phys-
ical point and the increased excited states contamination (ESC). To perform a step forward in this
direction and have a robust study of the continuum limit we are extending this calculation using
OpenLat gauge configurations [37–40]. The Open Lattice Initiative2 (OpenLat) is an effort aimed
at generating large-scale gauge ensembles for broad use within the scientific community. Currently,
OpenLat focuses on producing gauge ensembles with Nf = 2 + 1 flavors of Wilson fermions,
following a detailed and systematic plan [40]. All computations are conducted within the stabi-
lized Wilson fermion (SWF) framework [41], which employs the Lüscher-Weisz improved gauge
action [42, 43], and the exponentiated Clover action for quarks [41], with the clover coefficient
tuned non-perturbatively [37, 41].

Since this study aims to provide a robust estimate of systematic uncertainties, we proceed
incrementally. The first step focuses on the continuum limit in the unphysical scenario where the
three light quarks are degenerate, corresponding to a pseudoscalar mass of mπ ≃ 411 MeV.

The plots in Fig. 6 present preliminary results obtained on OpenLat gauge configurations. The
left plot illustrates the continuum limit of the nEDM, with different colors representing results
for source-sink separations of tsep ≃ 1.1 fm and tsep ≃ 1.3 fm. Similarly, the right plot shows the
continuum limit of the Schiff moment3 for the same source-sink separations. It is important to
emphasize that these results are very preliminary and a more quantitative discussion should follow
after a more final data analysis. A cursory look at the results in Fig. 6 indicate that if there are ESC
they are below the current statistical uncertainties, but adopting the large source-sink separation
data set we reach a vanishing neutron EDM in the continuum limit. Clearly a larger statistics and
more values of source-sink separation are necessary to finalize this calculation.

Recent years have seen significant progress in neutron θEDM calculations. The ETM Collab-

2https://openlat1.gitlab.io
3The Schiff moment here corresponds to the normalized slope in Q2 of the CP-odd form factor F3(Q2) at Q2 = 0.
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oration presented results [44] using Nf = 2+ 1+ 1 dynamical quarks at physical light quark masses
and a single lattice spacing a ≃ 0.08 fm, yielding |dn | = 0.0009(24) θ̄ e fm. An important aspect
of this work is the use of the topological charge defined through spectral projectors, providing a
complementary approach to the GF for better control of the continuum limit.

The Los Alamos National Laboratory (LANL) group conducted a comprehensive study of the
neutron θEDM, carefully addressing lattice spacing and pion mass effects [34]. A key observation
was the potential systematic uncertainty arising from differences in constraining ESCs through Nπ
contributions versus relying solely on LQCD data.

The χQCD Collaboration recently published results using HYP-smeared Domain Wall sea
quarks and Overlap valence quarks at a ≃ 0.11 fm [35]. Their approach employed a topological
charge definition based on the Overlap lattice Dirac propagator, leading to a neutron EDM result
of dn = −0.00148(14)(31) θ̄ e fm. These studies highlight the need for improvements in critical
areas. Enhancing signal-to-noise ratios, either through two orders of magnitude higher statistics
or advanced methodologies, is essential. A deeper understanding of ESC effects, particularly
near physical light quark masses, is required. Reducing statistical uncertainties is crucial for
effectively analyzing lattice correlation functions. Additionally, discretization effects and continuum
extrapolations demand more attention. Both ETMC and χQCD results are limited to single lattice
spacings, with the former being obtained at the physical point. SymLat and LANL analyses, on
the other hand, include global fits that account for lattice spacing and pion mass dependence.
However, neither single lattice spacing results nor global fits sufficiently address the continuum
limit, underscoring the need for more comprehensive studies with finer lattice spacings and improved
methodologies. Expanding the ensemble set to include multiple quark masses and lattice spacings
smaller than ∼ 0.1 fm is necessary to resolve systematic uncertainties.

If the next generation of θEDM calculations, expected in 3-5 years, wants to achieve more
precise constraints on the θ-term contribution to EDMs and deepen our understanding of CP
violation, it must address these challenges comprehensively.

5. BSM operators and the gradient flow

At the hadronic scale, BSM contributions to the EDMs are characterized by CP-odd operators
of dimensions higher than four. The qCEDM, introduced in Eq. (4), is a dimension-5 operator that
contributes to the neutron EDM and other systems. While the challenges of the neutron θEDM
largely come from the degradation of the signal-to-noise ratio (SNR) in the chiral and infinite
volume limits, the qCEDM faces an additional obstacle: its complex renormalization pattern. It
has been shown in Ref. [45] the renormalization of the qCEDM using MOM-type of schemes
results in a large number of operator mixing basis that increase when using Wilson-type fermions.
Moreover, unavoidable power divergences proportional to 1/a2 persist, even with Ginsparg-Wilson
lattice actions, due to mixing between operators of the same chirality.

For the qCEDM, the GF offers a promising approach by improving the renormalization prop-
erties of local operators at finite flow time [46–51]. This enables better control over the otherwise
challenging renormalization process associated with the qCEDM. An alternative method to control
the power divergences, based on an axial Ward identity, has been proposed in Ref. [52].

9
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The connection between operators renormalized at finite flow time and those at t = 0 in QCD
can be established through perturbative methods in the continuum [53–60]. In this framework, the
short flow-time expansion (SFTX) provides a systematic method to match finite flow-time operators
to their QCD counterparts. Non-perturbative methods relying on Ward identities [61–63] provide
an alternative approach, independent of perturbative expansions.

The strategy for the computation of BSM contributions to the EDMs can be summarize in few
steps. First, one computes the relevant hadronic matrix element of the flowed operator. Second, after
renormalizing the flowed quark fields one performs the continuum limit at fixed flow time. Third,
one matches the results at finite flow times with the results in the MS scheme using the matching
coefficients obtained in perturbative QCD in the context of the SFTX. The renormalization of
flowed local fields is very simple and amounts to renormalize the flowed quark fields, thus any
bilinear renormalizes in the same way with a factor Z1/2

χ for each quark field. This implies that
ratios of flowed bilinears are free of ultraviolet divergences. A practical scheme to renormalize
flowed quark fields is to define ringed fields [53], , denoted as χ̊ and χ̊, and defined by the gauge-

invariant condition
〈
χ̊(x, t)

↔
/D χ̊(x, t)

〉
= − Nc

(4π)2t2 . This condition provides a significant advantage

due to its regularization independence, making it applicable both in perturbative frameworks and
non-perturbative lattice QCD simulations. Alternatively it is possible to study ratios of flowed
matrix elements and then perform the matching of such ratios. An important annotation in this
method is the case when flowed fields receive contributions from lower dimensional fields in the
SFTX. This is the case for the qCEDM and the gCEDM discussed here. At small flow times, the
flowed qCEDM receives contribution from the pseudoscalar density with a coefficient proportional
to 1/t. In such cases, the power-divergent term cannot be subtracted using a coefficient determined
in perturbation theory, as this would introduce uncontrolled systematic uncertainties due to power-
divergent neglected higher-order corrections.

The strategy we have proposed for the qCEDM can be summarized as follows, where for
simplicity we omit flavor indices. The SFTX of the qCEDM operator defined with ringed fields

O̊qC(t) = χ̊(t)γ5σµνGµν(t) χ̊(t) , (9)

is given by

O̊qC(t) =
cOP(t, µ)

t
PR(0, µ) +

∑
i

cqC,i(t, µ)Oi,R(0, µ) +O(t) , (10)

where we indicate with Oi,R generically the dimension = 5 operators contributing to the SFTX,
including our target operator of the qCEDM at vanishing flow time, OqC,R. The renormalized opera-
tors are assumed renormalized in the same scheme adopted to determine the matching coefficients,
cqC,i. The coefficient of the power divergent term can then be defined from the ratio

t

〈
O̊qC(t)P(0)

〉
⟨PR(0, µ)P(0)⟩

= t

〈
OqC(t)P(0)

〉
⟨P(t)P(0)⟩

〈
P̊(t)P(0)

〉
⟨PR(0, µ)P(0)⟩

= ∆(ḡ2)∆P(t, µ) (11)

where

∆(g2) = t

〈
OqC(t)P(0)

〉
⟨P(t)P(0)⟩ , and ∆P(t, µ) =

〈
P̊(t)P(0)

〉
⟨PR(0, µ)P(0)⟩

. (12)

10
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Figure 7: Dependence of the ratio of correlation functions, ΓCP(x4;t)
ΓPP(x4;t) , on Euclidean time x4/a, shown for two

flow times: t/a2 = 0.5 and t/a2 = 2.0

The O(t) terms affecting the determination of cOP(t, µ)

cOP(t, µ) = ∆(ḡ2)∆P(t, µ) +O(t) (13)

have to be considered carefully when subtracting the power divergence to determine the physical
matrix element.

The SFTX of a generic matrix element of the qCEDM denoted as
〈
O̊qC(t)Φ

〉
, is given by〈

O̊qC(t)Φ
〉
=

1
t
∆(ḡ2)∆P(t, µ) ⟨PR(0, µ)Φ⟩ + F

[
cqC,i(t, µ), ⟨PR(0, µ)Φ⟩ ,

〈
Oi,R(0, µ)Φ

〉]
, (14)

where with F[] we denote a function of the correlators and coefficients that appear in the argument.
One has all the ingredients needed to a determination of the renormalized qCEDM matrix element
at t = 0, related to

〈
OqC,R(0, µ)Φ

〉
. In Ref. [49] we have performed a first study of the power

divergence. We have studied the finite renormalization ∆(g2) and compared the results with
perturbative QCD [48, 50]. We have defined ∆(g2) non perturbatively using the ratio

RP(x4; t) = t
ΓCP(x4; t)
ΓPP(x4, t)

, (15)

where

ΓCP(x4; t) = a3
∑

x

〈
OqC(x4,x; t)P(0,0; 0)

〉
, ΓPP(x4; t) = a3

∑
x

⟨P(x4,x; t)P(0,0)⟩ , (16)

where for simplicity, we omit flavor indices. However, the interpolators in the correlator should be
understood as involving flowed fermion fields of different flavors, thereby excluding disconnected
diagrams. The plots in Fig. 7 show the plateau values, for 2 values of the flow time, for large x4

of RP(x4; t), corresponding to the vacuum-to-pion hadronic matrix element. This provides a non-
perturbative definition of ∆(g2) with a finite continuum limit. Fig. 8 presents the raw lattice data
together with the determination of ∆(g2) after performing the chiral and continuum extrapolations.
The left plot shows a polynomial representation as a function of the renormalized coupling g2, up
to order g8, while the right plot shows a polynomial constrained at leading order, O(g2), using
the perturbative result [48, 50], depicted as a straight green line. Although these results require
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Figure 8: Dependence of the function ∆(g2) on the strong coupling g. The left plot shows a polynomial
fit up to g8, derived from lattice data after continuum and chiral extrapolation. The right plot extends the
polynomial fit to g10, with the leading O(g2) term constrained by perturbative QCD results [48], indicated
by the green straight line.

validation with state-of-the-art gauge configurations, they demonstrate the feasibility of determining
the finite renormalization that connects higher-dimensional operators to lower-dimensional ones
over a wide range of renormalized couplings. A complete non-perturbative subtraction of the power
divergence in the physical matrix element still depends on a non-perturbative determination of the
matching coefficient for the pseudoscalar density, which is currently underway.

To determine the flow-time dependent coefficients cqC,i(t, µ), we evaluate the insertion of the
operators OqC(t) within off-shell amputated one-particle irreducible (1PI) Green’s functions. These
are matched with its SFTX containing all the operators Oi at t = 0, probed with unflowed fermion
and gauge fields. The calculations are performed in the massless limit, with matching conducted
to one-loop accuracy. Explicitly incorporating the quark mass terms into the operators ensures that
the one-loop coefficients c(1)qC,i(t, µ) remain independent of the low-energy scales.

After renormalizing in a given scheme the strong coupling, let us say for definiteness the MS
scheme, we normalize the flowed fermion fields (e.g., using ringed fields). Standard matching
techniques [64–66] can be applied, where the loop integrands are expanded in all scales except the
flow time t prior to integration. Although this expansion modifies the infrared (IR) structures of the
loop integrals, the IR alterations cancel in the difference between the MS and flowed diagrams.

Expanding the loop integrals results in scaleless integrals for operator insertions on the t = 0
side of the matching equations, which vanish in dimensional regularization. As a result, the
ultraviolet (UV) and IR singularities of the expanded loops remain identical. Flowed operator
insertions are inherently free of UV singularities, aside from the gauge coupling renormalization
and the quark-field renormalization factor Z1/2

χ . The IR singularities from the expanded loop
integrals on the flowed, t > 0, side of the matching equations, match the UV MS counterterms
exactly.

The finite matching coefficients cqC,i are then straightforward to compute using the expanded
integrals of flowed operator insertions, which reduce to single-scale integrals. Even with the inclu-
sion of general gauge parameters, the calculations remain manageable. Performing computations
with generic gauge parameters provides a robust check, as the coefficients cqC,i of gauge-invariant
operators in the SFTX must be independent of these parameters.
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The list of Feynman diagrams needed to compute the matching coefficient cqC,qC are depicted
in Fig. 9. Beside the standard Feynman diagrams there are additional Feynman diagrams coming
from the perturbative expansion of the GF equation (depicted in the red box). Feynman rules can
be found for example in Refs. [48, 50]. As an example of resulting matching coefficient I report
here at next-to-leading order (NLO)

cqC,qC(t, µ) = 1+
αs
4π

[
(5CF−2CA) log(8πµ2t)−1

2

(
(4+5δHV)CA+(3−4δHV)CF

)
−log(432)CF

]
, (17)

where CF = 4/3, and CA = 3 in QCD. The parameter δHV takes value 0 or 1 resepctively in the
scheme with anticommuting γ5 or in the ’t Hooft-Veltman scheme [67]. The extension of this
calculation to next-to-next-to-leading order (NNLO) is ongoing [51] using the tools introduced in
Ref. [59].

A similar calculation has been performed in [68] for the gCEDM operator defined in Eq. (5).
As an example of result in the MS scheme for the matching of the gCEDM into itself is given by

cgC,gC = 1 +
αs
4π

[
6CA log(8πµ2t) + CA

3

]
, (18)

Figure 9: Feynman diagrams illustrating the contri-
butions to the matching coefficient of the qCEDM into
itself at vanishing flow time. The diagrams enclosed in
the red boxed area represent new contributions arising
from the perturbative expansion of the GF equations.

6. Summary and Outlook

Detecting an electric dipole moment
(EDM) in systems such as neutrons, atoms, or
molecules at current sensitivities would mark
a significant breakthrough in physics, probing
Beyond the Standard Model (BSM) at mass
scales beyond those accessible to colliders.
However, a single EDM measurement cannot
distinguish between BSM theories or clarify the
nature of CP-violation. A coordinated program
across atomic, molecular, nuclear, and particle
physics is essential to address these questions.

Effective field theory describes low-energy
effects of BSM physics through quark and gluon
operator matrix elements. Estimating these ma-
trix elements requires non-perturbative tech-
niques due to the strong coupling at relevant
scales. While methods like dimensional anal-
ysis, sum rules, and chiral effective field theory provide approximate estimates, their accuracy is
limited by uncontrolled approximations. Recent advancements in lattice QCD (LQCD) offer more
reliable matrix element calculations with well-defined uncertainties.

First LQCD calculations of the hadronic matrix elements relevant for EDMs are beginning to
provide reliable estimates, despite the significant challenges they face. The nucleon EDM induced
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by the θ term continues to suffer from severe signal-to-noise issues, but recent results have started to
show signals significantly different from zero. Although we are not yet in the precision era for these
calculations, ongoing efforts to critically assess and address remaining systematic uncertainties
are paving the way for more robust and impactful results. To make sure the next generation of
LQCD calculations for the θEDM are impactful for upcoming experiments, a substantial increase
in simulation statistics or the development of more effective noise reduction techniques will be
essential; however, if the signal is particularly small, even such improvements may not be sufficient.
Additionally, systematic uncertainties from excited state contamination and discretization effects
must be carefully controlled to ensure the results are meaningful.

The renormalization of the BSM operators has long been a major obstacle to a reliable deter-
mination, using LQCD, of the BSM contributions to the nucleon EDMs. Recently new techniques
based on the gradient flow have shown potentials to resolve the renormalization challenge, and
already several results in perturbative QCD and LQCD have been obtained. All the technical and
theoretical advancements of the past few years should finally see applications in the next 5 years,
where we should see more precise results for the θEDM and first results for some BSM contributions
to the nucleon EDMs.

Acknowledgments

I have profited from discussions about the electric dipole moment and the gradient flow
with Vincenzo Cirigliano, Skyler Degenkolb, Jordy de Vries, Jack Dragos, Robert Harlander,
Anna Hasenfratz, Jangho Kim, Keh-Fei Liu, Tom Luu, Emanuele Mereghetti, Christopher J. Mona-
han, Matthew D. Rizik, Jaideep Singh, Peter Stoffer, Andre Walker-Loud and Oliver Witzel. I want
to thank the OpenLat members Francesca Cuteri, Anthony Francis, Patrick Fritzsch, Jangho Kim,
Giovanni Pederiva, Dimitra A. Pefkou, Antonio Rago, Andre Walker-Loud and Savvas Zafeiropou-
los for a most enjoyable collaboration. I especially want to thank Jangho Kim for helping with plots
and analysis presented in Sec. 2.1. I acknowledge funding support from Deutsche Forschungs-
gemeinschaft (DFG, German Research Foundation) through grant 513989149, from the National
Science Foundation grant PHY-2209185 and from the DOE Topical Collaboration Nuclear The-
ory for New Physics award No. DE-SC0023663. Numerical calculations for some of the results
presented in this contributions were performed using resources from the National Energy Research
Scientific Computing Center (NERSC), a Department of Energy Office of Science User Facil-
ity, under NERSC award NP-ERCAP0027662; and the Gauss Centre for Supercomputing e.V.
(www.gauss-centre.eu) on the GCS Supercomputer JUWELS [69] at the Jülich Supercomputing
Centre (JSC). I also acknowledge the EuroHPC Joint Undertaking for awarding this project access
to the EuroHPC supercomputer LEONARDO, hosted by CINECA (Italy) and LUMI at CSC (Fin-
land). The author acknowledges support as well as computing and storage resources by GENCI on
Adastra and Occigen (CINES), Jean-Zay (IDRIS) and Irène-Joliot-Curie (TGCC) under projects
(2020-2024)-A0080511504 and (2020-2024)-A0080502271 through which gauge generation for
the Openlat collaboration has been made possible.

14



P
o
S
(
E
u
r
o
P
L
E
x
2
0
2
3
)
0
2
4

Electric dipole moments: a gateway to new physics Andrea Shindler

References

[1] S. Navas et al. [Particle Data Group], Phys. Rev. D 110, 030001 (2024).

[2] T.-H. Yeh, J. Shelton, K. A. Olive, and B. D. Fields, JCAP 10, 046 (2022),
[arXiv:2207.13133 [astro-ph.CO]].

[3] R. J. Cooke, M. Pettini, and C. C. Steidel, Astrophys. J. 855, 102 (2018),
[arXiv:1710.11129 [astro-ph.CO]].

[4] G. Jungman, M. Kamionkowski, A. Kosowsky, and D. N. Spergel, Phys. Rev. D 54, 1332
(1996), [arXiv:astro-ph/9512139].

[5] N. Aghanim et al. [Planck Collaboration], Astron. Astrophys. 641, A6 (2020),
[arXiv:1807.06209 [astro-ph.CO]], [Erratum: Astron.Astrophys. 652, C4 (2021)].

[6] A. Sakharov, Sov. Phys. Usp. 34, 392 (1991).

[7] N. Cabibbo, Phys. Rev. Lett. 10, 531 (1963).

[8] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49, 652 (1973).

[9] M. Shaposhnikov, Nucl. Phys. B 287, 757 (1987).

[10] M. Gavela, P. Hernandez, J. Orloff, and O. Pene, Mod. Phys. Lett. A 9, 795 (1994),
[arXiv:hep-ph/9312215].

[11] P. Huet and E. Sather, Phys. Rev. D 51, 379 (1995), [arXiv:hep-ph/9404302].

[12] A. G. Cohen, D. Kaplan, and A. Nelson, Ann. Rev. Nucl. Part. Sci. 43, 27 (1993),
[arXiv:hep-ph/9302210].

[13] E. Salpeter, Phys. Rev. 112, 1642 (1958).

[14] R. Alarcon et al., “Electric dipole moments and the search for new physics,” in Snowmass
2021. 3, 2022. arXiv:2203.08103 [hep-ph].

[15] C. Abel et al. [nEDM Collaboration], Phys. Rev. Lett. 124, 081803 (2020),
[arXiv:2001.11966 [hep-ex]].

[16] A. P. Serebrov et al., Phys. Rev. C 92, 055501 (2015).

[17] D. Wurm et al., EPJ Web Conf. 219, 02006 (2019), [arXiv:1911.09161 [physics.ins-det]].

[18] J. W. Martin, J. Phys. Conf. Ser. 1643, 012002 (2020).

[19] T. Ito et al., Phys. Rev. C 97, 012501 (2018), [arXiv:1710.05182 [physics.ins-det]].

[20] E. Shabalin, Sov. J. Nucl. Phys. 28, 75 (1978).

[21] E. Shabalin, Sov. Phys. Usp. 26, 297 (1983).

15

https://arxiv.org/abs/2207.13133
https://arxiv.org/abs/1710.11129
https://arxiv.org/abs/astro-ph/9512139
https://arxiv.org/abs/1807.06209
https://arxiv.org/abs/hep-ph/9312215
https://arxiv.org/abs/hep-ph/9404302
https://arxiv.org/abs/hep-ph/9302210
https://arxiv.org/abs/2203.08103
https://arxiv.org/abs/2001.11966
https://arxiv.org/abs/1911.09161
https://arxiv.org/abs/1710.05182


P
o
S
(
E
u
r
o
P
L
E
x
2
0
2
3
)
0
2
4

Electric dipole moments: a gateway to new physics Andrea Shindler

[22] C.-Y. Seng, Phys. Rev. C91, 025502 (2015), [arXiv:1411.1476 [hep-ph]].

[23] V. Cirigliano and M. J. Ramsey-Musolf, Prog. Part. Nucl. Phys. 71, 2 (2013),
[arXiv:1304.0017 [hep-ph]].

[24] J. de Vries, P. Draper, K. Fuyuto, J. Kozaczuk, and B. Lillard, Phys. Rev. D 104, 055039
(2021), [arXiv:2107.04046 [hep-ph]].

[25] K.-F. Liu, [arXiv:2411.15198 [hep-lat]].

[26] F. He, M. Abramczyk, T. Blum, T. Izubuchi, H. Ohki, and S. Syritsyn, PoS LATTICE2023,
336 (2024), [arXiv:2311.06106 [hep-lat]].

[27] F. K. Guo, R. Horsley, U.-G. Meißner, Y. Nakamura, H. Perlt, P. E. L. Rakow, G. Schierholz,
A. Schiller, and J. M. Zanotti, Phys. Rev. Lett. 115, 062001 (2015),
[arXiv:1502.02295 [hep-lat]].

[28] Lüscher, M., JHEP 1008, 071 (2010), [arXiv:1006.4518 [hep-lat]].

[29] M. Cè, C. Consonni, G. P. Engel, and L. Giusti, Phys. Rev. D92, 074502 (2015),
[arXiv:1506.06052 [hep-lat]].

[30] E. Shintani, T. Blum, T. Izubuchi, and A. Soni, Phys. Rev. D93, 094503 (2016),
[arXiv:1512.00566 [hep-lat]].

[31] K.-F. Liu, J. Liang, and Y.-B. Yang, Phys. Rev. D 97, 034507 (2018),
[arXiv:1705.06358 [hep-lat]].

[32] S. Syritsyn, T. Izubuchi, and H. Ohki, PoS Confinement2018, 194 (2019),
[arXiv:1901.05455 [hep-lat]].

[33] J. Dragos, T. Luu, A. Shindler, J. de Vries, and A. Yousif, Phys. Rev. C 103, 015202 (2021),
[arXiv:1902.03254 [hep-lat]].

[34] T. Bhattacharya, V. Cirigliano, R. Gupta, E. Mereghetti, and B. Yoon, Phys. Rev. D 103,
114507 (2021), [arXiv:2101.07230 [hep-lat]].

[35] J. Liang, A. Alexandru, T. Draper, K.-F. Liu, B. Wang, G. Wang, and Y.-B. Yang [χQCD
Collaboration], Phys. Rev. D 108, 094512 (2023), [arXiv:2301.04331 [hep-lat]].

[36] J. de Vries, E. Mereghetti, and A. Walker-Loud, Phys. Rev. C92, 045201 (2015),
[arXiv:1506.06247 [nucl-th]].

[37] A. S. Francis, F. Cuteri, P. Fritzsch, G. Pederiva, A. Rago, A. Shindler, A. Walker-Loud, and
S. Zafeiropoulos, PoS LATTICE2021, 118 (2022), [arXiv:2201.03874 [hep-lat]].

[38] F. Cuteri, A. S. Francis, P. Fritzsch, G. Pederiva, A. Rago, A. Shindler, A. Walker-Loud, and
S. Zafeiropoulos, PoS LATTICE2022, 426 (2023), [arXiv:2212.07314 [hep-lat]].

16

https://arxiv.org/abs/1411.1476
https://arxiv.org/abs/1304.0017
https://arxiv.org/abs/2107.04046
https://arxiv.org/abs/2411.15198
https://arxiv.org/abs/2311.06106
https://arxiv.org/abs/1502.02295
https://arxiv.org/abs/1006.4518
https://arxiv.org/abs/1506.06052
https://arxiv.org/abs/1512.00566
https://arxiv.org/abs/1705.06358
https://arxiv.org/abs/1901.05455
https://arxiv.org/abs/1902.03254
https://arxiv.org/abs/2101.07230
https://arxiv.org/abs/2301.04331
https://arxiv.org/abs/1506.06247
https://arxiv.org/abs/2201.03874
https://arxiv.org/abs/2212.07314


P
o
S
(
E
u
r
o
P
L
E
x
2
0
2
3
)
0
2
4

Electric dipole moments: a gateway to new physics Andrea Shindler

[39] F. Cuteri, A. Francis, P. Fritzsch, G. Pederiva, A. Rago, A. Shindler, A. Walker-Loud, and
S. Zafeiropoulos, PoS LATTICE2022, 074 (2023), [arXiv:2212.11048 [hep-lat]].

[40] A. Francis, F. Cuteri, P. Fritzsch, G. Pederiva, A. Rago, A. Shindler, A. Walker-Loud, and
S. Zafeiropoulos, PoS LATTICE2023, 048 (2024), [arXiv:2312.11298 [hep-lat]].

[41] A. Francis, P. Fritzsch, M. Lüscher, and A. Rago, Comput. Phys. Commun. 255, 107355
(2020), [arXiv:1911.04533 [hep-lat]].

[42] M. Luscher and P. Weisz, Commun. Math. Phys. 98, 433 (1985), [Erratum:
Commun.Math.Phys. 98, 433 (1985)].

[43] M. Luscher and P. Weisz, Phys. Lett. B 158, 250 (1985).

[44] C. Alexandrou, A. Athenodorou, K. Hadjiyiannakou, and A. Todaro, Phys. Rev. D 103,
054501 (2021), [arXiv:2011.01084 [hep-lat]].

[45] T. Bhattacharya, V. Cirigliano, R. Gupta, E. Mereghetti, and B. Yoon, Phys. Rev. D92,
114026 (2015), [arXiv:1502.07325 [hep-ph]].

[46] A. Shindler, J. de Vries, and T. Luu, PoS LATTICE2014, 251 (2014),
[arXiv:1409.2735 [hep-lat]].

[47] J. Kim, J. Dragos, A. Shindler, T. Luu, and J. de Vries, “Towards a determination of the
nucleon EDM from the quark chromo-EDM operator with the gradient flow,” in 36th
International Symposium on Lattice Field Theory (Lattice 2018) East Lansing, MI, United
States, July 22-28, 2018. 2018. arXiv:1810.10301 [hep-lat].

[48] M. D. Rizik, C. J. Monahan, and A. Shindler [SymLat Collaboration], Phys. Rev. D 102,
034509 (2020), [arXiv:2005.04199 [hep-lat]].

[49] J. Kim, T. Luu, M. D. Rizik, and A. Shindler [SymLat Collaboration], Phys. Rev. D 104,
074516 (2021), [arXiv:2106.07633 [hep-lat]].

[50] E. Mereghetti, C. J. Monahan, M. D. Rizik, A. Shindler, and P. Stoffer, JHEP 04, 050 (2022),
[arXiv:2111.11449 [hep-lat]].

[51] R. Harlander, M. D. Rizik, J. Borgulat, and A. Shindler, PoS LATTICE2022, 313 (2023),
[arXiv:2212.09824 [hep-lat]].

[52] T. Bhattacharya, V. Cirigliano, R. Gupta, E. Mereghetti, J.-S. Yoo, and B. Yoon, Phys. Rev. D
108, 074507 (2023), [arXiv:2304.09929 [hep-lat]].

[53] H. Makino and H. Suzuki, PTEP 2014, 063B02 (2014), [arXiv:1403.4772 [hep-lat]].

[54] T. Endo, K. Hieda, D. Miura, and H. Suzuki, PTEP 2015, 053B03 (2015),
[arXiv:1502.01809 [hep-lat]].

[55] K. Hieda and H. Suzuki, Mod. Phys. Lett. A31, 1650214 (2016),
[arXiv:1606.04193 [hep-lat]].

17

https://arxiv.org/abs/2212.11048
https://arxiv.org/abs/2312.11298
https://arxiv.org/abs/1911.04533
https://arxiv.org/abs/2011.01084
https://arxiv.org/abs/1502.07325
https://arxiv.org/abs/1409.2735
https://arxiv.org/abs/1810.10301
https://arxiv.org/abs/2005.04199
https://arxiv.org/abs/2106.07633
https://arxiv.org/abs/2111.11449
https://arxiv.org/abs/2212.09824
https://arxiv.org/abs/2304.09929
https://arxiv.org/abs/1403.4772
https://arxiv.org/abs/1502.01809
https://arxiv.org/abs/1606.04193


P
o
S
(
E
u
r
o
P
L
E
x
2
0
2
3
)
0
2
4

Electric dipole moments: a gateway to new physics Andrea Shindler

[56] R. V. Harlander and T. Neumann, JHEP 06, 161 (2016), [arXiv:1606.03756 [hep-ph]].

[57] C. Monahan, Phys. Rev. D97, 054507 (2018), [arXiv:1710.04607 [hep-lat]].

[58] R. V. Harlander, Y. Kluth, and F. Lange, Eur. Phys. J. C78, 944 (2018),
[arXiv:1808.09837 [hep-lat]], [Erratum: Eur. Phys. J.C79,no.10,858(2019)].

[59] J. Artz, R. V. Harlander, F. Lange, T. Neumann, and M. Prausa, JHEP 06, 121 (2019),
[arXiv:1905.00882 [hep-lat]], [Erratum: JHEP 10, 032 (2019)].

[60] A. Suzuki, Y. Taniguchi, H. Suzuki, and K. Kanaya, Phys. Rev. D 102, 034508 (2020),
[arXiv:2006.06999 [hep-lat]].

[61] L. Del Debbio, A. Patella, and A. Rago, JHEP 11, 212 (2013), [arXiv:1306.1173 [hep-th]].

[62] Lüscher, M., JHEP 1304, 123 (2013), [arXiv:1302.5246 [hep-lat]].

[63] A. Shindler, Nucl.Phys. B881, 71 (2014), [arXiv:1312.4908 [hep-lat]].

[64] A. V. Manohar, Lect. Notes Phys. 479, 311 (1997), [arXiv:hep-ph/9606222].

[65] A. V. Manohar, Phys. Rev. D 56, 230 (1997), [arXiv:hep-ph/9701294].

[66] A. V. Manohar, [arXiv:1804.05863 [hep-ph]].

[67] G. ’t Hooft and M. Veltman, Nucl. Phys. B 44, 189 (1972).

[68] O. L. Crosas, C. J. Monahan, M. D. Rizik, A. Shindler, and P. Stoffer, Phys. Lett. B 847,
138301 (2023), [arXiv:2308.16221 [hep-lat]].

[69] Jülich Supercomputing Centre, Journal of Large-Scale Research Facilities 7, A183 (2021).

18

https://arxiv.org/abs/1606.03756
https://arxiv.org/abs/1710.04607
https://arxiv.org/abs/1808.09837
https://arxiv.org/abs/1905.00882
https://arxiv.org/abs/2006.06999
https://arxiv.org/abs/1306.1173
https://arxiv.org/abs/1302.5246
https://arxiv.org/abs/1312.4908
https://arxiv.org/abs/hep-ph/9606222
https://arxiv.org/abs/hep-ph/9701294
https://arxiv.org/abs/1804.05863
https://arxiv.org/abs/2308.16221

	Matter-antimatter asymmetry
	Electric dipole moments and new physics
	The neutron electric dipole moment

	CP-violating sources and role of lattice QCD
	Electric dipole moment form lattice QCD
	Electric dipole moment from the  term

	BSM operators and the gradient flow
	Summary and Outlook

