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1. Introduction

One of the greatest challenges of any data project is how to exploit the insight of the data while
protecting the confidentiality of the data. This is not a single problem, for which there is one best
solution. It is rather a very complex threat surface for which we must combine multiple solutions
and make them work together. Here, I focus on two approaches that have become mature only in
recent years and have a huge potential. They are currently not yet mainstream approaches, but there
are strong reasons to believe that they will be so within the next few years.

2. Multi-Party Confidential Computing

Consider the following problem as an example (many similar ones can be easily envisaged).
The Bank 𝐴 wants to do Anti-Fraud (AF) detection or Anti Money Laundering (AML) detection.
It has access to its own customer data & account data. It has also access to transaction data between
itself and bank 𝐵. But, of course, it has no access to customer & account data from bank 𝐵. This is
crucial information for preventing fraud. E.g. Was the account open very recently? That piece of
information alone would dramatically improve the AF and AML detection systems. Unfortunately,
today, in most cases, we can only accept the limitation, to the delight of criminal organizations.

But it does not need to be so. Today, Multi-Party Clean Rooms (MPCR, also called Multi-
Party Confidential Computing) offer a solution. The MPCR technology leverages Confidential
Computing (CC), which was originally introduced for a very different reason: facilitating cloud
migrations. In fact, one of the main historical concerns hampering cloud migrations has been the
risk that the cloud administrators could tamper with the data of the cloud customer. In general,
the data stored in the file system are encrypted, they are also encrypted while they are transfered
between machines and applications, but a cloud administrator could still dump the volatile memory
(RAM) of a virtual machine, or even change it. In practice, this risk has been mainly theoretical,
but it has blocked many discussions about cloud migrations.

For this reason, all the main chip manufacturers have developed their solutions to this problem.
That was not straightforward, because, historically, OS & CPUs had been designed with the idea
that the administrator can do everything. This is not a law of nature, but changing this paradigm did
require a very low-level redesign of the architecture. Today, all major chip manufacturers are selling
confidential computing solutions [1–5]. And all cloud providers offer them for a moderate price and
performance penalty [6–8]. These HW architectures include a so-called trusted execution enclave
(TEE) that is isolated from everything else, including its own OS, the hypervisor & OS of the host
machine. Thanks to this solution, the data are always encrypted outside the TEE enclave and only
privileged code has access to the TEE. Moreover, the solution offers a cryptographic confirmation
that the enclave is correctly configured and runs the software as expected.

These new capabilities are sometime called encryption in use, which complements the standard
encryption at rest and encryption in transit. This solution enables not only a more serene migration
to the cloud, but an entire new world of opportunities. Because, if we have a formal guarantee
that not even the system administrators with physical access to the machine can interfere with our
data, Then we can invite also third parties to process their own data together with our data on those
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machines, with the guarantee that nobody can see the data of the others. This is the idea of the
Multi-Party Data Clean Rooms.

In the specific case introduced above, both banks send their data to a central machine, running
a TEE, with a formal cryptographic guarantee that nobody can access the data of the other. And
their data are used only for the agreed analysis and only the agreed output is released. This could be
an alert that links to data from Bank A only, but with an additional score that reflects the knowledge
of the data hold by bank B.

The potential applications of this technology are countless. To mention another one, consider
the problem of sharing patients data between hospitals, researchers and pharma companies for
clinical trials. These processes are highly regulated, but the regulation is often ambiguous [9], and
the industry is plagued by risky practices. In fact, it is claimed [10], that 70% of clinical trials
are at high risk of data breach. Note, also, that almost half of the ;argest data breaches in history
happened since 2022 [11], which means that the problem is worsening rapidly and worryingly. The
risk is high, because very sensitive data are shared across multiple entities and the techniques used
to protect the data are often not adequate. Also in this case, multi-party clean rooms with a TEE
would represent a great step forward, at least in some cases.

Another very important application is the opportunity to revolutionize end-to-end supply chain
analytics. A typical supply chain involves multiple parties: suppliers, manufacturers, carriers,
retailers, distribution network, etc. The data that each party can share with the others is very limited
in terms of granularity and richness of details. On the other hand, this topic is so important that
many multi-billions merge and acquisitions are largely motivated by the need of a better control
over the supply chain.

Also in this case, a central TEE would be able to collect the data from all the parties without
sharing them with anyone (not even the entity that owns and/or manages the TEE), analyse the
combined data and share the agreed outcome that contains the useful information without revealing
confidential information.

Until now, we have discussed the problem of protecting confdential data, but we don’t need
to protect only data. We often want to protect also the Intellectual property of the software (SW)
that processes the data. A simple and important example is the following. Consider two parties: a
data owner and a SW owner. They want to do analytics by combining their precious data with their
powerful algorithm, but neither of them wants to share their most valuable asset with the other.
What does happen today? Either nothing, which is a missed opportunity, or someone accepts a big
risk that would very much prefer to avoid.

But it does not need to be so. A multi-party clean room offers the best guarantees that each
of those parties wishes, while enabling the analytics that they are aiming for. It is irrelevant who
owns or manages the TEE, because the technology ensures that even the TEE administrator cannot
access the information that is not agreed by both parties.

Although CC is a very recent technology, its adoption is growing fast. Appropriate legal
frameworks are also being defined. There are, however, some technical complexities that need to be
overcome. First, the process to onborad the data, agree on the processing and the expected output
is rather new. Companies like Opaque [12] and Decentriq [13] support the implementation of these
processes. Secondly, use cases that require complex processing and/or model training are more
challenging. Moreover, data and metadata quality become more crucial.
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The last two points lead us naturally to the introduction of another technique that plays a key
role to overcome these challenges: Differential Privacy and Synthetic Data.

3. Differential Privacy

Consider again the case of clinical trials. In some cases, the data processing is well defined,
which is a perfect use case for multi-party clean rooms, as we have seen.

But in other cases, some level of data exploration will be necessary. How can we enable the
scientists to derive insight from the data without putting at risk the privacy of the patient?

One traditional (and still common) approach to deal with this problem is to simply mask the
obvious direct identifiers. But this does not prevent reidentification. In fact it well known that
2-3 non sensitive attributes are often sufficient to reidentify an individual. For example, it was
famously noted [14] that the 87% of the US population can be reidentified based only on ZIP-code,
gender, date of birth. Many other, much less sensitive attributes by themselves, are also sufficient
to re-identify a sizeble amount of the population.

It is important to emphasize that reidentification (even with high probability) is explicitly
forbidden by GDPR. Although, the same regulations fails to point to a technique that provably
prevents reidentification with high probability [9].

K-anonymity [15] has become widely adopted in the past decade. But, besides dramatically
spoiling the value of the data, k-anonymity still allows reidentifying targets with high probability
[9], which, again, violates GDPR.

It is often argued that big aggregates are safe. But, we should also consider all possible
differences of the many big aggregates previously released. If, for example, a large aggregate
is updateed, the difference between the latest update and the previous version might reveal exact
personal information about an individual [16].

The past two decades have seen a revolution in the science of data privacy protection. The
groundbreaking work [17] introduced the concept of Differential Privacy (DP) and it was followed
by an intense activity to design optimised mechanisms that implement DP and the development
of the corresponding software tools. See [18] for a recent review. By now, DP is recognised by
the scientific community as the gold standard of privacy protection and its implementations have
reached considerable maturity. This is testified also by the number of prestgious academic awards
granted recently to the inventors of DP (Gödel Prize 2017, Knuth Prize 2020, ACM award 2021,
RSA award 2022).

DP was officially adopted by the US Census since 2018 and the 2020 release is fully based on
DP [19]. The Swiss Federal Statistical Office is evaluating it and contributing to its development
[20]. Apple, Google, Facebook, LinkedIn, Microsoft use it to collect reports from the users, and
more [21]. Accenture has also applied it in a very large scale project. Wikimedia has adopted it
to generate usage statistics, to protect individual contributors from potential threats [22]. Multiple
white papers recommend including DP explicitly it into policies, especially to clarify GDPR [9, 23].

Differential Privacy has a reputation of being a complex technique. But, in fact, the idea is
rather simple and I will illusrtate it here briefly.

Differential Privacy offers a definition of what we want to protect. To introduce it, let us
consider first the simple example in Tab. 1. How can I publish statistical reports without violating
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Name Age
Pippo 112
Pluto 60
Paperino 81
Topolino 38

=⇒

Name Age

Pluto 60
Paperino 81
Topolino 38

Table 1: We do not violate Pippo’s privacy if we drop Pippo’s record from the dataset.

the privacy of the individuals that contribute to it? For examples, outliers are at great risk, like
Pippo in this example.

The main assumption adopted by DP is that we will not violate Pippo’s privacy if we drop
Pippo’s records from the dataset. Similarly, we do not violate Pippo’s privacy if we add noise to the
output of each queries in a way that the probability of each outcome is almost the same whether we
keep Pippo in the dataset or remove him. Because then, nobody could infer with certainty whether
Pippo was actually in the dataset or not and nobody could infer even with significantly increased
probability whether Pippo was in the dataset or not.

Formally, the definition is as follows [17]. A randomized query 𝑄 is 𝜀-Differentially Private
iff:

• ∀ datasets 𝐷 and 𝐷′ that differs only by one record,

• ∀ outputs 𝑟 in the range of 𝑄,

𝑒−𝜀 ≤ 𝑃𝑟 [𝑄(𝐷) = 𝑟]
𝑃𝑟 [𝑄(𝐷′) = 𝑟] ≤ 𝑒𝜀 , (1)

where the probability 𝑃𝑟 [] is evaluated overe the random noise added to the queries output. In
other words, the probability of any outcome 𝑟 is roughly the same (i.e. within a band [𝑒−𝜀 , 𝑒𝜀])
whether any individual is included in the dataset or not.

Eq.1 is a definition. Importantly, over the years, multiple solutions have been developed
mechanisms that implement this definition with ever increasing signal to noise ratio. As a result,
today we have a rich ecosystem of tools (largely open-source) that make the implementation of DP
practical and effective [18].

DP introduces the important concept of Privacy Budget 𝜀, which measures the maximum
potential information gain that an attacker could obtain about the original data from the knowledge
of the published report. It is important to understand that multiple queries to the real data consume
more and more privacy budget. For the most common mechanisms, the total privacy budget is the
sum of the budgets of the individual queries. For total privacy budget 𝜀 ≲ 1, there cannot be any
significant information gain. For any 𝜀 < ∞ it remains impossible to draw any conclusion with
certainty. However, for 𝜀 ≫ 1, it might be possible to derive conclusions with high probability.
Because DP offers a worst case guarantee, also quite large value of 𝜀 might be still safe in practice,
but the formal guarantees of DP are not useful anymore.
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4. Synthetic Data

The examples above addressed the problem of publishing reports or histograms safely. But,
once histograms are available, they can be used to generate synthetic data with the same statistical
distributions. Synthetic Data are fake data that reproduce some of the statistical properties &
format of the real data. There are many ways to generate synthetic data. Gen AI, for example,
has expanded considerably the types of data that could be synthetized. However, this does not
guarantee by itself privacy protection1. But, if we combine any synthetic data generation with DP,
the resulting synthetic data inherit the privacy guarantees of DP. Moreover, the post-processing
guarantee [17], impled by DP, ensures that the synthetic data produced in this way can be used as
much as wished, without additional risks (i.e. without consuming further privacy budget).

If one knows exactly the query that is required on the data, then it is usually more efficient to
add DP directly in the query, without going through synthetic data. But if we don’t, synthetic data
are a very flexible way to answer a much broader range of unforeseen queries.

It is important to stress the difference between DP and the multiple alternative techniques that
are still being used to generate synthetic data from real data, many of which claim to also protect
the privacy of the original data.

It is instructive to compare the history of Data Privacy to the history of Cryptography. The
history of cryptography is filled with examples of astute encryption methods that look hard and
unbreakable when introduced, but could be broken eventually, with dire consequences for those who
trusted them. The turning point that led to modern cryptography was the realization that we can &
must prove mathematically that breaking a cryptographic mechanism is sufficiently hard, according
to a suitable complexity theory. Today, nobody would take seriously any encryption method that
does not come with a such proof. DP represents the same turning point for privacy protection, but
its adoption is still inconsistent across vendors and organizations.

DP has become mature in very recent years, but there are still some technical obstacles that
delay its wider adoption. First, as we already mentioned, each time we access the same data we
cosume some additional privacy budget. However, this is not a critical problem, because DP is
mainly needed in the development and model training phases. Simple inference, in production
environment, consume much less privacy budget and can also be done safely by using confidential
computing, as described in the previous section.

Another problem is the need of clean, well formatted, well documented data and metadata.
This topic is discussed in more detail in the next section.

5. Analytic workflows and standard

An analytic workflow requires multiple tasks (and roles) with different challenges, from the
point of view of data confidentiality. It is convenient to group these tasks in two main broad
categories. On one hand, data analysis, training of machine learning models, report generation
require data with realistic statistical properties. The real data must be accessed multiple times
by teams that are usually rather small. In these phases, the format of the data has already been

1Neural Networks definitely memorize training data and occasionally leak them [24]. This holds also when Federated
Leraning is used [25].
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processed and homogenized. This category of tasks has been the main focus of research in synthetic
data and it is a very mature topic.

On the other hand, other tasks like data ingestion, data mapping, application development,
data quality assessment and remadiation, have very different challenges. They demand much lower
requirements from the point of view of the statistical properties of the data. Moreover, the real data
need to be accessed much more rarely by humans. However they are performed by larger teams that
take care of a large number of different datasets. This category of tasks seem more amenable to full
automation, which would also eliminate the concerns about data confidentiality. The wish of fullly
automated data quality checks is very old, but it has proved much more difficult than expected. To
be fair, it is quite easy to develop tools that correct something. It is much more challenging to do
it systematically with a good coverage of all possible issues. The reason is that there are many
possible mistakes, and any data quality detection tool must make strong assumptions of what can
go wrong and what cannot go wrong. Reducing too much these assumptions lead very quickly to
an explosion of complexity and costs.

Generative AI and Large Language Models (LLMs) do help some of these tasks, but they
cannot represent the main solution to this problem, because they are not assumptions-free. On the
contrary, they involve their own hidden assumptions, which we are not even aware of [26].

The solution can only come from reliable, widely adopted, standards about data formats and
metadata structures. Much progress has been achieved in this respect in recent years. A nice
example is the convergence to a widely supported standard for data lineage [27]. The growing
popularity of data streaming solution is also helping the convergenge to robust standard, simply
because it removes the dependence on legacy formats like .csv and similar loosely standardised
formats. A lot, however, remains to be done. If we are serious about preventing data briches, we
must converge towards reliable standards about data exchanges.
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