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When designing lattice actions, gauge field smearing is often used in the definition of the lattice
Dirac operator. Too much smearing can result in uncontrolled continuum extrapolations as the
short distance behaviour of the theory is mutilated, which is a situation to be avoided. As a
smearing prescription we focus on the gradient flow formalism as it allows to study both smearing
and physical flow simultaneously. We investigate the effect of smearing and physical flow on the
scaling towards the continuum limit in pure gauge theory. We focus on the example of Creutz
ratios, which provide a measure of the physical forces felt by the fermions. For suitable smearing
strengths we further investigate the impact of replacing theWilson gradient flow by stout smearing.
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1. Introduction

A reduction of lattice artefacts is beneficial for more reliable continuum extrapolations, in
particular of short distance observables. A popular methods to alter discretisation effects is UV
filtering, which is based on the application of four-dimensional gauge field smearing. The Dirac
operator is evaluated on smeared gauge fields such that the action is altered into

S[U] = Sg[U] + Ψ D[S[U]]Ψ, (1)

where S : U 7→ S[U] is a smearing transformation. Several smearing algorithms have been
developed, e.g. HYP [1], Stout [2], HEX [3] and gradient flow [4, 5] smearing. Evaluating the
Dirac operator on smeared gauge fields yields several advantages: The likelihood of finding small
eigenvalues of D is reduced, i.e. exceptional configurations can be avoided. In [6] even at very
coarse lattice spacings the Wilson Dirac operator defined with nHYP gauge links could be shown
to exhibit a spectrum with a well-defined spectral gap. The same was shown for stout smearing
in [7]. This is particularly helpful for the simulation of mass non-degenerate quarks as the fermion
determinant is not necessarily positive in such a scenario [8]. Gauge field smearing also has an
impact on improvement coefficients and renormalisation constants. In [6] it was observed that the
improvement coefficient cSW approaches its tree-level value when gauge field smearing is applied.
The amount of renormalisation in ZV is also reduced. However, the application of too much
smearing may significantly alter the UV structure of the lattice theory and therefore continuum
extrapolations based on data from insufficiently small lattice spacings may become unreliable. It is
therefore relevant to study the range of smearing strengths that still allow for controlled continuum
extrapolations. As a first step towards a smeared action setup with fermions we study smeared
observables

〈OS[U]〉 = 〈O[S[U]]〉 (2)

in pure gauge theory. We investigate the influence of smearing on continuum extrapolations of
Creutz ratios [9], which provide a measure of the physical forces felt by the fermions caused by the
gauge field. For a previous account of this effort we refer the reader to [10, 11].

2. The gradient flow formalism, gradient flow smearing and physical gradient flow

In this work we focus on the gradient flow formalism [5] as a smearing procedure. We
start from the continuum four-dimensional Yang-Mills action SYM = −

1
2g2

0

∫
d4x tr(Fµν(x)Fµν(x)).

Fµν = ∂µAν − ∂νAµ + [Aµ, Aν] denotes the field strength tensor and Aµ(x) the corresponding
gauge field. In the gradient flow formalism a gauge field Bµ(x, tfl) is introduced, where tfl ≥ 0 is
the so called gradient flow time. At tfl = 0 the standard gauge field Aµ(x) is used as an initial
condition for the flow time evolution, i.e. Bµ(x,0) = Aµ(x). The evolution is then governed by the
gauge-covariant flow equation

∂

∂tfl
Bµ(x, tfl) = −

δSYM[B]
δBµ(x, tfl)

= DνGνµ(x, tfl), (3)

2



P
o
S
(
E
u
r
o
P
L
E
x
2
0
2
3
)
0
2
2

Gauge field smearing and controlled continuum extrapolations Andreas Risch

where Gµν = ∂µBν − ∂νBµ + [Bµ,Bν] denotes the generalised field strength tensor and Dµ =

∂µ + [Bµ, ·] the generalised covariant derivative. Performing a leading-order perturbative expansion
it was shown that the gauge field Bµ(x, tfl) is a spherically smoothed version of Aµ(x) with mean-
square radius rsm =

√
8tfl [5], i.e. in the direction of positive flow time the gradient flow possesses

a smoothing property. In [12] it was shown perturbatively to all loop orders that any functional of
the flowed fields Bµ(x, tfl) at strictly positive tfl is finite, assuming that the four-dimensional theory
has been renormalised. Consequently, no additional renormalisation has to be applied. The Wilson
gradient flow [5] is used as a lattice discretisation of the Yang-Mills gradient flow. The flow equation
is then integrated numerically using an explicit 3rd-order Runge-Kutta integration scheme [5] with
a step size ∆tfl

a2 never exceeding 0.01.
The gradient flow will be applied to the gauge field in two scenarios: In the first scenario,

which we refer to as gradient flow smearing, the gradient flow time and consequently the smearing
radius vanishes in the continuum limit. Hence the continuum theory is unaltered. This can be
achieved by fixing the gradient flow time in lattice units, i.e. 8tfl

a2 = const. The second scenario, in
which the flow time is fixed in physical units, i.e. tfl/t0 = const, we refer to as a physical gradient
flow. In principle, t0 may be any physical scale of the theory. We make use of the reference flow
time introduced in [5], which we will define in section 4. In this scenario the continuum theory
is altered. This type of alteration of an observable’s continuum limit can also be understood as
a modification of the definition of the observable itself, i.e. the physical gradient flow allows to
construct new observables.

3. Combined continuum extrapolation and small flow time expansion

In the following we consider a dimensionless observable Ô, which does not require a renormal-
isation and hence is finite in the continuum limit. We will understand this observable as a function
of the dimensionless lattice spacing parameter â ≡ a√

8t0
and the flow time parameter ε = tfl

t0
. Due to

the finiteness of the observable the continuum limit and the zero flow time limit can be interchanged,
i.e. limâ→0 limε→0 Ô = limε→0 limâ→0 Ô. In this case the two scenarios discussed in section 2
have a common limit where both a = 0 and tfl = 0. Therefore, a combined Symanzik and small
flow time expansion is possible and well-defined. The double expansion of the observable reads

Ô =
∑
i, j≥0

ci j âiε j . (4)

We neglect logarithmic effects both in the lattice spacing [13] and in the flow time [5] as this
investigation has only intermediate precision. Evaluating this expression in the continuum â = 0,
it becomes obvious that the observable’s continuum limit Ô = c00 +

∑n
j>0 c0jε

j can be altered by a
physical gradient flow. c00 denotes the continuum limit at vanishing flow time. In this work, we are
primarily interested in the effect of smearing on the continuum extrapolation. To demonstrate that
eq. (4) also describes the observable’s lattice spacing dependence at fixed smearing strength 8tfl

a2 , we
observe that the latter is parametrised by ε

â2 =
8tfl
a2 . The expansion can therefore we rewritten as a

function of the lattice spacing and the smearing strength:

Ô =
∑
i, j≥0

ci j âi+2j
( ε
â2

) j
=

∑
i, j≥0

ci j âi+2j
(8tfl

a2

) j
. (5)
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Evaluating the smearing expansion in the continuum limit â = 0 yields Ô = c00, i.e. the continuum
limit is independent of the smearing strength by construction. The main advantage of this combined
Symanzik and small flow time expansion is that data measured at various small â ≡ a√

8t0
and ε = tfl

t0
can be combined to determine the coefficients ci j , from which the lattice spacing dependence can
be reconstructed for any sufficiently small smearing strength or flow time parameter.

4. Lattice setup

ensemble β T/a L/a a [fm] L [fm] t0/a2

sft1 6.0662 80 24 0.0820(5) 1.968(12) 3.990(9)
sft2 6.2556 96 32 0.0616(4) 1.971(12) 7.070(17)
sft3 6.5619 96 48 0.04031(26) 1.935(12) 16.52(6)
sft4 6.7859 192 64 0.03010(19) 1.927(12) 29.60(10)
sft5 7.1146 320 96 0.01987(13) 1.908(12) 67.94(23)

Table 1: Parameters of the SU(3) gauge ensembles [14] and computed reference flow time t0/a2 in lattice
units.

This study is based on SU(3) Yang Mills theory gauge ensembles [14] using the Wilson
plaquette action, where temporal open boundary conditions [15] are imposed to alleviate topology
freezing. An overview of the gauge ensembles is given in table 1. The reference flow time t0 [5] is
used as a scale to construct dimensionless quantities. To define t0 we make use of the action density

E(x, tfl) = −
1
2

∑
µ,ν

tr
(
Gclv
µν(x, tfl)G

clv
µν(x, tfl)

)
, (6)

where Gclv denotes the field strength tensor in the clover discretisation [16]. The reference flow
time t0 is then implicitly defined by [5]

t2
0 〈E(x, t0)〉 = 0.3. (7)

Numerical values are listed in table 1. The physical value of t0 = 0.0268(3) fm2 is obtained from
the force parameter r0 [17], where for illustration a value of r0 = 0.5 fm is used. The lattice spacing
varies between 0.08 fm and 0.02 fm and the spatial extent between 1.9 fm and 2 fm.

5. Creutz ratios and gradient flow

Creutz ratios [9] are suitable observables for a study in pure gauge theory as they possess a
finite continuum limit. The latter are constructed from planar rectangular Wilson loops W(r, t) ≡
〈tr(P exp(

∮
γ(r ,t)

dxµAµ(x)))〉, which are obtained from the gauge field by a path-ordered integral
along a rectangular closed path γ(r, t). In lattice gauge theory these objects are discretised as

W(r, t) =
〈

tr
( ∏
(x,µ)∈γ(r ,t)

Uµ(x)
)〉
. (8)
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Figure 1: Dimensionless Creutz ratio χ̂ and relative variance
√
vχ̂
χ̂ as functions of the flow time 8tfl

a2 and the
distance r̂ on the ensemble sft4.

Creutz ratios are obtained fromWilson loops by χ(r, t) ≡ − ∂
∂t

∂
∂r ln(W(r, t)). To obtain O(a2) lattice

artefacts the latter definition is discretised making use of central differences [18]:

χ
(
t +

a
2
,r +

a
2

)
≡

1
a2 ln

(W(t + a,r) ·W(t,r + a)
W(t,r) ·W(t + a,r + a)

)
. (9)

The static quark anti-quark force can be extracted in the limit of an infinite time extent, χ(r, t) →
Fqq(r) for t →∞ [18].

In the following discussion we will only focus on diagonal Creutz ratios χ(r, t) with r = t,
which we abbreviate as χ(r) ≡ χ(r,r). We compute the latter in lattice units (χ · a2)( ra ) for various
half integer distances r

a = 1.5,2.5, . . . based on gauge configurations which gradient flow smearing
was applied to. We use t0 to define dimensionless Creutz ratios, i.e. we analyse χ̂ ≡ χ · 8t0 as a
function of r̂ ≡ r√

8t0
. In our measurements we implement the two scenarios for scaling the flow

time via

8tfl
a2 =

{
0, 0.25, 0.5, . . . , 2, 2.5, . . . , 3.5, 4, 5, 6, 7, 8 smearing
8t0
a2 × 0.0146 × j , j ∈ {0, 1, . . . , 4} physical flow.

(10)

The computation is based on the openQCD [19] package and utilises B. Leder’s program for
measuring Wilson loops [20, 21]. For the data analysis the python3 package pyobs [22] is used,
which implements the Γ-method [23] for Monte Carlo error estimation.

As discussed in the introduction smearing is commonly used to reduce UV fluctuations in
gauge fields, which also has an impact on the variance of observables. In fig. 1 the dimensionless
diagonal Creutz ratio χ̂ and its relative variance

√
vχ̂
χ̂ are displayed as functions of the distance r̂ and

the smearing strengths 8tfl
a2 for the ensemble sft4. We observe that the ∼ 1

r2 short distance behaviour
is smoothed by the gradient flow at distances r /

√
8tfl. Consequently, the path to the continuum

and hence lattice artefacts are altered in the smearing scenario. This effect becomes smaller at larger
distances where the smearing has less impact. We observe that the relative variance of the Creutz
ratio

√
vχ̂
χ̂ grows with growing distances. Applying gradient flow smearing the relative variance

shrinks with growing flow time at all distances [18]. However, smearing the gauge fields does not

5
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Figure 2: Dimensionless Creutz ratio χ̂ as a function of the distance r̂ on the ensemble sft4 with a gradient
flow time 8tfl

a2 = 2 for various interpolation models.

lead to an arbitrary large reduction of the relative variance, which seems to be almost independent
of the distance r̂ .

6. Interpolation of Creutz ratios

In order to perform a continuum extrapolation of a Creutz ratio χ̂(r̂) evaluated at a fixed
distance r̂ , χ̂(r̂) has to be known on all ensembles at r̂ . Therefore, an interpolation of χ · a2 as
a function of r

a is applied. This interpolation is however not unique but depends on the specific
interpolation model. In fig. 2 the results of several interpolation models are shown for a smearing
strength 8tfl

a2 = 2 for the ensemble sft4. The relative statistical, systematic and total variances are
also displayed. Details on the used interpolation models are described in [10]. The interpolation
models significantly differ at short distances, where the systematic error associated with the choice
of the interpolation model dominates the overall error. The interpolations also differ at larger
distances where the data fluctuates due to the loss of the signal. However, the dominant source of
uncertainty in this region is the statistical error. In this work we focus on the region 0.3 ≤ r̂ ≤ 0.6
(0.14 fm ≤ r ≤ 0.28 fm), where lattice artefacts are not uncontrollably large and the statistical as
well as the systematic uncertainties for the ensembles sft1-4 are sufficiently small.

7. Influence of the smearing strength on the continuum extrapolation

As discussed in section 3 we perform a global continuum extrapolation at fixed distance r̂
combining data from both the smearing and the physical gradient flow scenarios, c.f. eq. (10). A
fit ansatz for the extrapolation is obtained by truncating the expansion eq. (4):

χ̂tr = c00 + c20â2 + c40â4 + c01ε + c21â2ε + c02ε
2. (11)

To make the description of smearing more visible the latter fit ansatz can also be written as a
truncation of eq. (5):

χ̂tr = c00 + c20

(
1 +

c01
c20

8tfl
a2

)
â2 + c40

(
1 +

c21
c40

8tfl
a2 +

c02
c40

(8tfl
a4

)2)
â4. (12)

6
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Figure 3: Dimensionless Creutz ratio χ̂ ≡ χ · 8t0 as a function of the lattice spacing â ≡ a√
8t0

at a distance of
r̂ ≡ r√

8t0
= 0.3 (top) and 0.4 (bottom) (r = 0.14/0.18 fm). Extrapolations for several gradient flow smearing

strengths 8tfl
a2 (solid) and for several physical gradient flows tfl

t0
(dashed). Solid lines and circles belong to

gradient flow smearing, whereas dashed lines and squares represent a physical gradient flow. Data points
have been shifted for better visibility.

In fig. 3 the continuum extrapolations for the distances r̂ = 0.3 and 0.4 for both smearing and
physical flow are shown. An inclusion of data from too large smearing strengths 8tfl

a2 and too large
physical gradient flow times t0

tfl
led to fits with a insufficient p-value, which is an indication of

the breakdown of the Symanzik and the small flow time expansion. In principle, this depends
however on the distance r̂: At larger distances larger values of 8tfl

a2 and t0
tfl
can be fitted with the given

low-order expansion. Extrapolations for different smearing strengths 8tfl
a2 are depicted with solid

lines. By construction of the fit model the continuum limit is independent of 8tfl
a2 in the smearing

scenario as pointed already out in section 3 and hence all continuum extrapolations share a common
continuum limit. We observe that for larger 8tfl

a2 smearing extrapolations possess an increasingly
non-monotonous behaviour. Furthermore, extrapolations for different physical gradient flow times
ε = tfl

t0
are depicted with dashed lines. As already anticipated in section 3 we observe a dependence

of the continuum limit on ε, which the fit model is able to describe by construction. This dependence
is more pronounced at shorter distances. For the given range of ε and r̂ we observe monotonous
continuum extrapolations.
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Figure 4: Location of the maximum of χ̂(â) as a function of the smearing strength 8tfl
a2 for several distances

r̂ ≡ r√
8t0

.

The requirement of a monotonous continuum extrapolation may serve as a loose criterion for a
controlled continuum extrapolation, which we will apply to the smearing scenario in the following.
The latter criterion will limit the smearing strength and the lattice spacing of the coarsest ensemble
considered. To study monotony we track the location â2

peak of the maximum of the continuum
extrapolation of χ̂ as a function of 8tfl

a2 at various distances r̂ . Consequently, all lattice spacings
with â2 < â2

peak belong to a continuous extrapolation. In fig. 4 the location of the peak â2
peak is

plotted as a function of the smearing radius for various distances r̂ . Given a minimum distance r̂
that is supposed to be extrapolated reliably in the sense of a monotonous continuum extrapolation,
all points

( 8tfl
a2 , â2) below the curve related to the distance r̂ describe to monotonous extrapolations.

In particular, we observe that larger distances r̂ allow for larger maximum lattice spacings and
more importantly for a larger smearing strength 8tfl

a2 . Considering ensembles with lattice spacings
a ≤ 0.06 fm and demanding for monotonous extrapolations for distances r ≥ 0.14 fm (r̂ ≥ 0.3)
one should choose 8tfl

a2 / 1. In order to reliably describe even smaller distances one has to consider
ensembles with smaller lattice spacings or apply less smearing.

8. Comparison between gradient flow and stout smearing

In simulations including dynamical fermions the application of the gradient flow as a gauge
field smearing technique in the Dirac operator is computationally demanding. Instead, one therefore
employs stout smearing with a small number of smearing iterations. However, gradient flow and
stout smearing can be related to each other by 8tfl

a2 = 8nρ, where ρ is the stout smearing parameter,
as in the limit of n → ∞ and ρ → 0 stout smearing converges towards the gradient flow [24],
i.e. stout smearing can be understood as an approximation of gradient flow smearing. In fig. 5
continuum extrapolations for stout and gradient flow smeared Creutz ratios are displayed with a
smearing strength of 8tfl

a2 = 8nρ = 1. We observe that replacing the gradient flow by stout smearing
increases the absolute size of lattice artefacts. However, when applying three stout iterations, the
stout smeared Creutz ratio almost reproduces the gradient flow result within errors. The location of
the maximum of the stout smeared extrapolation is shifted to somewhat larger â2 compared to the

8
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Figure 5: Continuum extrapolations of stout smeared Creutz ratio χ̂ at distances r̂ = 0.3/0.4 (r =
0.14/0.18 fm) as a function of the lattice spacing â2. Data points have been shifted for better visibility.

gradient flow, i.e. our findings for gradient flow smearing form a conservative bound. In principle,
even the application of one stout smearing iteration might be sufficient.

9. Conclusion and Outlook

We have investigated the influence of gradient flow smearing and physical gradient flow on
continuum extrapolations. In particular, we studied diagonal Creutz ratios χ(r,r) evaluated at
various distances r . We introduced an extrapolation ansatz that allows to simultaneously study
gradient flow smearing and physical gradient flow. Our investigations show that the maximum
tolerable smearing radius still allowing for a monotonous continuum extrapolation depends on the
distance r . We demand monotony as a minimum requirement for a reliable extrapolation of data to
the continuum as we only have limited knowledge about the shape of the continuum extrapolation,
in particular when higher order a effects and logarithmic corrections [14] have to be considered,
i.e. a simple functional form is essential for a controlled extrapolation. Given a set of lattice gauge
ensembles covering lattice spacings in a certain fixed range, we confirmed that for short distance
observables less smearing is tolerable. Figure 4 summerises the main result of our numerical
investigation. Each curve yields the upper bound of the region where a continuum extrapolation is
monotonous. For 8tfl

a2 = 1 we also studied the case when gradient flow smearing is approximated
by a small number n of stout smearing iterations keeping 8tfl

a2 = 8nρ fixed. In this case we found
that the location of the maximum in the continuum extrapolation is shifted to somewhat larger
â2. Moreover, even a single stout smearing step with ρ = 1

8 reproduces our conceptual findings.
Creutz ratios give a measure of the force between static quarks and hence also have an implication
for computations including fermions. Nevertheless, it is important to confirm our findings also
considering observables based on fermions, where the smearing strength is fixed to the found range.

We gratefully acknowledge the support of DESY where our computations were performed. AR would
like to thank S. Schaefer and R. Sommer for a fruitful collaboration.
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