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1. Introduction

Lattice methods provide a systematically improvable framework to study gauge theories non-
perturbatively, and from first principles. A vast number of increasingly precise results have been ob-
tained for Quantum Chromodynamics (QCD) and for strongly-interacting gauge theories in general.
Regarding the time coordinate as a complex variable, lattice simulations allow computing functions
of time on the imaginary (Euclidean) axis. The analytical continuation back to real (Minkowski)
time is close to the problem of solving a Fredholm integral equation, with a number of additional dif-
ficulties originating from the nature of lattice data. The problem is in fact, in this context, ill-defined
and ill-conditioned. Nonetheless, given its importance, a large effort has been devoted to developing
regularising strategies [1–10] to solve what is generally referred to as the ‘‘inverse problem’’. The
motivations are manifold: a clean solution with quantifiable errors would allow ab-initio calcula-
tions of phenomenologically important quantities such as scattering amplitudes [11–13], inclusive
decay rates [14–20], as well as predictions from QCD at a finite temperature [21–36].

In the following, after a brief introduction to the problem, we shall review two closely related
methods that have been recently devised in order to provide a solution to the inverse problem with
controlled systematics. The HLT procedure [3], close to Backus-Gilbert methods, and its Bayesian
formulation given in Ref. [10], which differs from other approaches previously devised based on
Bayesian inference. Moreover, we will show a method to systematically validate a given approach
to the inverse problem given a set of correlators for which we can measure the covariance matrix.

In the context of lattice gauge theories, the inverse problem refers to the operation of extract-
ing the spectral density from a correlation function of gauge-invariant operators. In the case of a
function of two operators separated by the Euclidean time C, the relation can be written as

�!) (C) =
∫ ∞

0
3� 1) (C, �) d!) (�) , (1)

where �)! and d)! are respectively the correlator and the spectral density in a four dimensional
lattice, with spatial volume !3, time extent ) , and lattice spacing 0. The function 1) (C, �) can be
written, in general, as

1) (C, �) = 1+4−C� + 1−4−()−C )� , (2)

the numbers 1± are integer numbers that depend on the nature of the correlation function. The
distributional nature of the spectral function requires the introduction of a Schwartz function (f (�−
l) and a corresponding smeared spectral function:

d! (f;l) =
∫

3� Sf (l − �) d! (�) . (3)

The parameter f allows controlling the size of the smearing. For practical use, the Schwartz func-
tion should be defined in such a way that limf→0 Sf (l − �) = X(l − �). In the following, we
shall introduce so-called linear methods, where the smeared version of the solution is represented
as a linear combination of correlation functions:

d! (f, l) =
gmax∑
g=1

6C (�)�! (0g) , 0 < g ≤ gmax , g = C/0 . (4)
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This class of solutions always provides a smeared spectral function. From Eqs. (4) and (3) it in fact
follows that

Sf (�, l) =
gmax∑
g=1

6g (f;l) 1) (0g, �) . (5)

A number of complications arise when dealing with the inverse problem. While the spectral
function has in principle support over the real axis, the available data constitutes a discrete and finite
set, in an apparent mismatch of information. The smearing operation, however, already eases this
aspect, and the finiteness of the dataset only amounts to a systematic error, without compromising
the uniqueness of the solution. Another complication, typical to lattice data, is the exponential
dumping of the signal due to the functions 1) (C, �), which reduces to exp(−C�) at large ) . As
a consequence, linear solutions to the inverse problem give rise to ill-conditioned systems which
require very precise input data. Moreover, the unavoidable presence of errors on the input correlators
results in numerical instabilities of the solution, possibly posing the most serious challenge. On the
lattice, this is additionally exacerbated by the ill conditioning of the system. The regularisation that
is needed to stabilise the problem introduces a bias that is hard to estimate. In discussing approaches
to the inverse problem we will focus, in the following, on how they manage the aforementioned
issues. After introducing the procedures and the connection between them, we shall comment on
their ability to provide unbiased solutions.

2. The HLT procedure

We briefly review this procedure which provides a set of rules for the calculation of smeared
spectral functions and the treatment of its errors, see [3, 10] for more comprehensive discussions.
The mathematics of the procedure shares similarities with other methods that can be found in particle
physics [37], as well as in geophysics [38–40].

The goal is to find the best approximation for a spectral function smeared with a chosen ker-
nel Sf (�, l). To this end, let us introduce a representation of the smearing kernel based on the
functions 1) (C, �):

Sf (� − l) =
∞∑
g=1

6̂g (f;l)1∞(0g, �) . (6)

Let � (0g) be the exact correlators (without errors). The spectral function smeared with Sf is then

d(f;l) =
∞∑
g=1

6̂g (f;l)� (0g) . (7)

Both Eqs. (6) and (7) are exact representations, and an expression for the coefficients ĝ can be
given:

ĝ(f;l) = arg min
g∈RN

∫ ∞

0
3� 4U�

����� ∞∑
g=1

6g (l)1∞(0g, �) − Sf (�, l)
�����2 , (8)

where each real value of U < 2 defines norms with different weights. In practice, one has access to
a finite number gmax of correlators. An approximation for the coefficients, that we label g, can still
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be given with a similar expression:

g(f;l) = arg min
g∈Rgmax

∫ ∞

0
3� 4U�

�����gmax∑
g=1

6g (l)1) (0g, �) − Sf (�, l)
�����2 . (9)

The approximated kernel and smeared density are:

Sf (� − l) '
gmax∑
g=1

6g (f;l)1∞(0g, �) , d(f;l) '
gmax∑
g=1

6g (f;l)� (0g) . (10)

The representations in Eq. (10) are in fact still valid up to a systematic error, which was shown
to vanish quickly, being small even for moderate values of gmax, see e.g. Ref. [3]. Extracting a
continuous function from a finite number of data does not seem to make our problem ill-defined,
as it merely amounts to a systematic error. The reason is, however, that the problem is already
regulated: we are not accessing the underlying spectral function but a smeared version of it.

In realistic cases, the correlator is affected by many sources of error, statistical and systematic.
This makes the problem ill-posed even in presence of the smearing, because the representations of
Eq. (10) are not stable within error fluctuations of the correlation function. An additional regulator
needs to be applied. Following the prescription of Backus and Gilbert, we introduce the regulated
coefficients, that we keep calling g with abuse of notation:

g(f;l) = arg min
g∈Rgmax

∫ ∞

0
3� 4U�

�����gmax∑
A=1

6g (l)1) (0g, �) − Sf (�, l)
�����2

+ _
gmax∑

g1,g2=1
6g1 (l) �g1g2 6g2 (l) , _ ∈ (0,∞) (11)

The matrix � is the covariance matrix of the correlator, often rescaled to be dimensionless. The
parameter _ regulates the coefficients by making them smaller, which stabilises Eq. (10). This
introduces a bias, since the coefficients will now differ from the approximation of Eq. (9). In the
limit _ → ∞ the bias is maximum, and the solution is simply g = 0, while at _ = 0 the bias is not
present, but the statistical noise is, effectively, infinitely large.

In order to make the prediction for the smeared spectral density reliable, an intermediate value
of _must be chosen, and the effect of its resulting bias needs to be assessed precisely. The procedure
consists in performing a scan of different values of _, starting with a larger value and gradually
decreasing it until the output is dominated by noise. If the signal is good enough, one can identify
a plateau at smaller values of _, before the signal is lost into the statistical noise. This strategy has
analogies with fits in Euclidean time of correlation functions and effective masses. Numerical work
on both synthetic and real Monte Carlo data has been supporting the capability of this procedure
to provide unbiased results, with a notable example being Ref. [15], where lattice data was tested
against analytic results.

3. Bayesian methods: interplay between smearing and priors

The inverse problem has been attacked with Bayesian frameworks for many years [1, 2]. It is a
powerful tool with many perks, such as the ability to incorporate prior knowledge about the solution,
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and to produce analytic expressions for the results, which can add precious insights. Here, we shall
discuss the setup based on Gaussian Processes (GP). We will focus on the interplay between the
choice of the prior and the smearing, and the treatment of the bias introduced while regularising the
problem, in order to compare with Section 2.

There are at least two ways of setting up the Bayesian solution to the inverse problem. The
common ground, and a difference with respect to frequentist methods (e.g. Backus-Gilbert), is that
one computes probability densities associated with the spectral functions, rather than the spectral
functions themselves. A first strategy, which has been very popular, is to compute the probability
density for the spectral function directly. In this case, the smearing arises implicitly because we are
numerically forced to give a width to the covariance Kprior. Alternatively, one we can set up the
problem to compute the probability density for a spectral function that is smeared with a chosen
kernel, similarly to what is done with the HLT method. In the latter case, the smearing is explicit,
and we are able to make consistent assumptions about the functional nature of the prior and posterior
distributions. We shall now discuss both cases.

Implicit smearing. Leaving out the mathematical details, that can be found in our recent work [10],
we briefly mention that the spectral density is promoted to a stochastic field R(�), that we assume
to have a Gaussian underlying distribution Π [R]. The latter is fully specified by a central value and
a covariance for the field variable:

dprior(l) =
∫

DR Π [R] R(l) . (12)

Kprior(l1, l2) =
∫

DR Π [R] R(l1)R(l2) . (13)

The observational noise is also assumed to be a random vector that is being sampled from a multi-
variate Gaussian distribution: in this case the mean is assumed to be zero, and the covariance matrix
Cov3 is measured from the data. By using Bayes’ theorem, we can then obtain a posterior distribu-
tion that corresponds to the prior one, conditioned by the data, see Ref. [10] for details. Since every
distribution is Gaussian, the posterior will be as well. The central value is the function

dpost(l) =
gmax∑
g=1

6GP
g (l)� (0g) , (14)

and the variance is

Kpost(l, l) = Kprior(l, l) −
gmax∑
g=1

6GP
g (l)

∫ ∞

0
3� Kprior(l, �)1) (0g, �) . (15)

In the above equations we have made the common choice to set dprior = 0. The coefficients 6GP
g are

given in Table 1. The smearing kernel is not known a priori, it is defined implicitly by Eq. (10) and
it can be computed once the coefficients are known. However, one can a priori acquire a qualitative
understanding of how the smearing kernel may look, based on the shape of the prior. The prior
covariance of the spectral function, in fact, determines certain properties of the posterior, such as its
typical correlation length. In a finite volume, the spectral density is a sum of X-functions. The central
value of the posterior distribution should accordingly be a distribution, which can only happen in
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the limiting case in which the prior itself is infinitely narrow. This singular behaviour cannot be
achieved numerically, and one settles for a prior with a finite width. As a consequence, the spectral
density is smeared, and the resulting kernel has a typical width, that is loosely determined by the
width of the prior. Interestingly, in the limit in which Kprior becomes a X-function, the coefficients
are identical to those defined in Eq. (11) at U = 0 and in the limit of vanishing f, see Table 1.

Explicit smearing. We consider the problem of determining the probability density of the field
variable Rf describing a spectral density smeared with a given Schwartz function (f:

Rf (l) =
∫ ∞

0
3� Sf (l − �)R(�) . (16)

Applying Bayes’ theorem as before, the posterior probability density for the spectral density smeared
with Sf can be computed. The resulting expression for the coefficients can be found in Table 1,
and more details are in Ref. [10].

As stated above, the finite-volume spectral density is characterised by sharp peaks, and the
choice of the covariance of the posterior should allow for this behaviour. A natural choice is then
to use a fully uncorrelated covariance,

Kprior(�, l) = 4U�

_
X(� − l) . (17)

This can now be done, because the spectral density appears at every stage in a convolution with
the Schwartz function (f , and no singular behaviour is encountered at finite f. The choice of the
normalisation of the covariance allows for a direct connection with the HLT procedure. In fact,
using Eq. (17) one obtains a posterior distribution for Rf characterised by a mean function that
is identical to the HLT solution, i.e. with coefficients given by Eq. (11). The covariance of the
posterior distribution is given by

Kpost(l, l) =
∫

3�
4U�

_
Sf (l, �)

(
gmax∑
g=1

6g (f, l) 1) (0g, �) − Sf (l, �)
)
, (18)

which does not have an analogue in any frequentist approach. The square root of Eq. (18) is however
interpreted as the statistical error on the smeared spectral density, and in this respect it can be
compared to a frequentist error, which can be estimated, for instance, with a resampling procedure.

6g1 (l) =
∑

g2 (Σ + _�)−1
g1g2 5g2 (l)

Σg1g2 5g (l)

HLT
∫
�
1) (g1, �)1) (g2, �)

∫
�
Sf (l − �)1) (g, �)

GP impl. smr.
∫
�1�2

1) (g1, �1)Kprior(�1, �2) 1) (g2, �2)
∫
�
Kprior(l − �)1) (g, �)

GP expl. smr.
∫
�1�2

1) (g1, �1)Kprior(�1, �2)1) (g2, �2)
∫
�1�2

1) (g, �1) Kprior(�1, �2) Sf (�2, l)

Table 1: Formulae for the linear systems determining the coefficients in the three cases analysed in this work:
HLT, Bayesian inference with GPs with implicit (induced by Kprior) and explicit (with the smearing kernel
Sf) smearing of the spectral function. The matrix � is proportional to the covariance of the correlator.
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Regularising bias. In either of the Bayesian setups that we described, as far as the stability with
respect to the noise on the input data is concerned, the problem is regularised in the same way
as it is in Backus-Gilbert methods. The expression for the coefficients 6g that is explicitly given
in Tab. 1 involves a linear system, where an ill-conditioned matrix is regularised by adding the
covariance of the data, times a parameter. In Backus-Gilbert methods, this is done by hand, as
shown in Eq. (11). With Bayesian methods, it appears as a hyperparameter which normalises the
covariance of the prior, as seen in Eq. (17) (the same holds even if the covariance of the prior is
not a X-function). The value of _, and of any other hyperparameter, is selected as the one that
maximises a likelihood function which represents the probability of observing the data, given a
choice of the hyperparameters. It is natural to ask how this compares to the stability analysis of
the HLT method. In order to make a precise comparison, we use the Bayesian setup with explicit
smearing: in this case, in fact, the spectral function is smeared with the same kernel (a Gaussian
function), and a comparison is straightforward. In Ref. [8] a comparison between this setup and
HLT was done using lattice data. We have found that values of _ in the stability region tend to be
those that maximise the likelihood, or equivalently minimise its negative logarithm (NLL). This
suggests that the two approaches are consistent. In the same work, we compared the size of the
error, which is the other notable difference in the two approaches. Our findings suggest that at fixed
_ the Bayesian error is more conservative.

4. Systematic validation against pseudodata

With an increasing variety of methods available, it is desirable to devise a flexible validating
strategy that can allow making comparisons between different approaches to the inverse problem.
At the same time, it should be taken into account that features of lattice data can vary significantly
depending on the details of the simulations: the optimal strategy can vary. Moreover, a general
question about the possibility itself to provide unbiased estimation of the spectral function remains,
since the problem is ill-posed to begin with. The arguments raised with the stability analysis, or
the minimisation of the NLL support a positive answer to this question, which can be made more
quantitative with a validation strategy.

With these motivations, we defined #toys sets of synthetic finite-volume spectral functions,

d(�) =
=max−1∑
==0

F= X(� − �= ), �0 < �1 ≤ . . . (19)

which are specified by an equivalent number of sets for the energies �= and matrix elements F=.
The value of =max has been chosen to be roughly the number of finite-volume states populating the
energy range of interest for a given volume. We decided for simplicity to take the energy levels to be
equally spaced. The matrix elements are instead sampled from a multivariate normal distribution,
specified by a vanishing mean, and a covariance given by

 weights(=, =′) = ^ exp
(
− (�= − �=′)2

2n2

)
. (20)

The value of n is set to be smaller than the spacing between subsequent energy levels, in order to
reproduce the sharply decorrelated features of a finite-volume spectral function. The parameter ^

7
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Figure 1: Examples of the stability analysis performed in different instances of the inverse problem. The exact
result is also reported as a black line. The HLT band corresponds to the value determined by an automated
plateau selection. The Bayes’ band is selected by minimising the NLL.

is free, and different values can be tested. For each of the #toys sets of {�=, F=}, the corresponding
correlator can be defined as

� (C) =
=max−1∑
==0

F= 4
−|C |�= , �0 < �1 ≤ . . . . (21)

Statistical noise is the injected by generating #cnfg configurations for the correlator, using a multi-
variate normal distribution that is based on the covariance matrix of the correlator that was measured
on the lattice. This step is crucial in order to ensure the generated statistics related to the one of the
desired lattice simulations. With this setup, one can solve #toys instances of the inverse problem
and check the results against known solutions.

We have solved the inverse problem #toys ' 1500 times with the HLT and with the Bayesian
method, using what we referred to as explicit smearing. In both cases, the prediction was for the
spectral density of a vector-vector correlation function of mesons built with light quarks, smeared
with a Gaussian with smearing radius f ' 2<c . In showing our results, we first assess our ability
to remove the bias introduced when regularising the inverse problem. Fig. 1 shows some instances
randomly extracted from our validating procedure. The figure shows, in each panel, the stability
analysis using three different values of U (cf. Eqs. (11) and (17)). The panels also report the correct
value (horizontal black line) and the predictions from the minimisation of the NLL (Bayes’ band)
and due to the plateau analysis (HLT band).
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The result over the full statistics of over a thousand instances of the inverse problem can be
seen in Fig. 2, where we display on the left panel the probability density of the pull variable,

?f (�) =
d

pred
f (�) − dtrue

f (�)
Δdf

, (22)

where the quantity at the denominator represents the full error on the smeared spectral density. On
the right, the histograms of the difference dpred

f (�) − dtrue
f (�) is also reported. Differences between

histograms obtained with the HLT and the Bayesian analysis can arise for only two reasons. Firstly,
the error is computed in different ways. Secondly, the procedure for selecting _ is different, leading
to different central values. The latter is the only way to justify the difference in the histograms
displayed in the right panel of Fig. 2, since the error does not enter there. The histograms on the
right, showing the pull variable, additionally account for the difference in the errors.

The conclusion is that despite at fixed _ the Bayesian estimate is more conservative, when
coupled to the selection process for the value of _, the stability analysis statistically favours smaller
values, leading to larger statistical errors and therefore more conservative results. Additionally, as
shown in the probability density of the difference (right panel of the same figure), the central value
obtained with the stability analysis is statistically closer to the correct one. The same features can
also be appreciated in Fig. 1. It is understood that these results are specific to our data, and in a
different context the situation may vary. Nonetheless, the strategy shown here can be used in any
case to validate a chosen procedure. More details can be found in Ref. [10].

5. Conclusion

In this proceeding, we reviewed two popular frameworks for the computation of smeared spec-
tral densities from lattice correlators: the Backus-Gilbert method introduced in Ref. [3], and varia-
tions of Bayesian inference using Gaussian Processes [10]. We have shown that when the latter is
engineered to compute the probability density for a spectral function smeared with a chosen kernel,
the results are intimately related to those of the HLT method. There are two differences. First, the
error is computed differently, usually from a resampling procedure in any Backus-Gilbert approach,
while it is analytically given from the covariance of the posterior in the Bayesian case. Additionally,
the input parameters are selected differently: from a stability analysis in the HLT, from a likelihood

Figure 2: Probability densities for the pull variable defined in Eq. (22) on the left, and the difference between
the prediction and the true result on the right. These histograms result from ' 1500 instances of the inverse
problem.

9
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function otherwise. Tests on lattice data performed in Ref. [10] suggest that the approaches are
loosely compatible.

We then described a way to systematically validate a certain algorithm given a set of lattice
correlators for which the covariance matrix has been computed. The strategy is not new, since
it is inspired by the so-called ‘‘closure tests’’ performed in the contest of the determination of
parton distribution functions [41]. By using the covariance matrix measured in a recent lattice
calculation [17], we have found that the stability analysis provides on average results that are closer
to the correct ones. It is understood that the situation may vary when different data is analysed.

A direction for improvements could be to study the effect of errors on the covariance matrix
used in the validation strategy. It is well known that covariance matrices can be hard to estimate
reliably, and the impact this may have on our procedure is not known. Additionally, one could
improve the Bayesian analysis by sampling the likelihood instead of selecting its maximum value.
We leave these ideas for future studies.

While in this work we described two approaches that are based on very different philosophies,
they are both linear solutions to the inverse problem. An outlook to non-linear methods can be
obtained by looking at machine-learning techniques, such as the one developed in Ref. [8]. The
authors found the results to be in agreement with those obtained with the HLT method.

The consistency observed across different approaches is encouraging.

6. Acknowledgments

A.L. is funded in part by l’Agence Nationale de la Recherche (ANR), under grant ANR-22-
CE31-0011. L.D.D. is funded by the UK Science and Technology Facility Council (STFC) grant
ST/P000630/1 and by the ExaTEPP project EP/X01696X/1. M.P. has been partially supported
by the Italian PRIN ‘‘Progetti di Ricerca di Rilevante Interesse Nazionale – Bando 2022’’, prot.
2022TJFCYB, by the Spoke 1 ‘‘FutureHPC & BigData’’ of the Italian Research Centre in High-
Performance Computing, Big Data and Quantum Computing (ICSC), funded by the European Union
– NextGenerationEU, and by the SFT Scientific Initiative of the Italian Nuclear Physics Institute
(INFN). N.T. is supported by the Italian Ministry of University and Research (MUR) under the
grant PNRR-M4C2-I1.1-PRIN 2022-PE2 ‘‘Non-perturbative aspects of fundamental interactions,
in the Standard Model and beyond’’, F53D23001480006, funded by E.U. – NextGenerationEU.

References

[1] M. Asakawa, T. Hatsuda and Y. Nakahara, Maximum entropy analysis of the spectral
functions in lattice QCD, Prog. Part. Nucl. Phys. 46 (2001) 459 [hep-lat/0011040].

[2] Y. Burnier and A. Rothkopf, Bayesian Approach to Spectral Function Reconstruction for
Euclidean Quantum Field Theories, Phys. Rev. Lett. 111 (2013) 182003 [1307.6106].

[3] M. Hansen, A. Lupo and N. Tantalo, Extraction of spectral densities from lattice correlators,
Phys. Rev. D 99 (2019) 094508 [1903.06476].

10

https://doi.org/10.1016/S0146-6410(01)00150-8
https://arxiv.org/abs/hep-lat/0011040
https://doi.org/10.1103/PhysRevLett.111.182003
https://arxiv.org/abs/1307.6106
https://doi.org/10.1103/PhysRevD.99.094508
https://arxiv.org/abs/1903.06476


P
o
S
(
E
u
r
o
P
L
E
x
2
0
2
3
)
0
1
9

Approaches to the Inverse Problem Alessandro Lupo

[4] L. Kades, J.M. Pawlowski, A. Rothkopf, M. Scherzer, J.M. Urban, S.J. Wetzel et al., Spectral
Reconstruction with Deep Neural Networks, Phys. Rev. D 102 (2020) 096001 [1905.04305].

[5] J. Horak, J.M. Pawlowski, J. Rodríguez-Quintero, J. Turnwald, J.M. Urban, N. Wink et al.,
Reconstructing QCD spectral functions with Gaussian processes, Phys. Rev. D 105 (2022)
036014 [2107.13464].

[6] G. Bailas, S. Hashimoto and T. Ishikawa, Reconstruction of smeared spectral function from
Euclidean correlation functions, PTEP 2020 (2020) 043B07 [2001.11779].

[7] T. Bergamaschi, W.I. Jay and P.R. Oare, Hadronic structure, conformal maps, and analytic
continuation, Phys. Rev. D 108 (2023) 074516 [2305.16190].

[8] M. Buzzicotti, A. De Santis and N. Tantalo, Teaching to extract spectral densities from
lattice correlators to a broad audience of learning-machines, Eur. Phys. J. C 84 (2024) 32
[2307.00808].

[9] M. Bruno, L. Giusti and M. Saccardi, Spectral densities from Euclidean lattice correlators
via the Mellin transform, 2407.04141.

[10] L. Del Debbio, A. Lupo, M. Panero and N. Tantalo, Bayesian solution to the inverse problem
and its relation to Backus-Gilbert methods, 2409.04413.

[11] J.C.A. Barata and K. Fredenhagen, Particle scattering in Euclidean lattice field theories,
Commun. Math. Phys. 138 (1991) 507.

[12] J. Bulava and M.T. Hansen, Scattering amplitudes from finite-volume spectral functions,
Phys. Rev. D 100 (2019) 034521 [1903.11735].

[13] A. Patella and N. Tantalo, Scattering Amplitudes from Euclidean Correlators: Haag-Ruelle
theory and approximation formulae, 2407.02069.

[14] P. Gambino and S. Hashimoto, Inclusive Semileptonic Decays from Lattice QCD, Phys. Rev.
Lett. 125 (2020) 032001 [2005.13730].

[15] J. Bulava, M.T. Hansen, M.W. Hansen, A. Patella and N. Tantalo, Inclusive rates from
smeared spectral densities in the two-dimensional O(3) non-linear f-model, JHEP 07
(2022) 034 [2111.12774].

[16] P. Gambino, S. Hashimoto, S. Mächler, M. Panero, F. Sanfilippo, S. Simula et al., Lattice
QCD study of inclusive semileptonic decays of heavy mesons, JHEP 07 (2022) 083
[2203.11762].

[17] Extended Twisted Mass collaboration, Probing the Energy-Smeared R Ratio Using Lattice
QCD, Phys. Rev. Lett. 130 (2023) 241901 [2212.08467].

[18] Extended Twisted Mass collaboration, Inclusive hadronic decay rate of the g lepton from
lattice QCD, Phys. Rev. D 108 (2023) 074513 [2308.03125].

11

https://doi.org/10.1103/PhysRevD.102.096001
https://arxiv.org/abs/1905.04305
https://doi.org/10.1103/PhysRevD.105.036014
https://doi.org/10.1103/PhysRevD.105.036014
https://arxiv.org/abs/2107.13464
https://doi.org/10.1093/ptep/ptaa044
https://arxiv.org/abs/2001.11779
https://doi.org/10.1103/PhysRevD.108.074516
https://arxiv.org/abs/2305.16190
https://doi.org/10.1140/epjc/s10052-024-12399-0
https://arxiv.org/abs/2307.00808
https://arxiv.org/abs/2407.04141
https://arxiv.org/abs/2409.04413
https://doi.org/10.1007/BF02102039
https://doi.org/10.1103/PhysRevD.100.034521
https://arxiv.org/abs/1903.11735
https://arxiv.org/abs/2407.02069
https://doi.org/10.1103/PhysRevLett.125.032001
https://doi.org/10.1103/PhysRevLett.125.032001
https://arxiv.org/abs/2005.13730
https://doi.org/10.1007/JHEP07(2022)034
https://doi.org/10.1007/JHEP07(2022)034
https://arxiv.org/abs/2111.12774
https://doi.org/10.1007/JHEP07(2022)083
https://arxiv.org/abs/2203.11762
https://doi.org/10.1103/PhysRevLett.130.241901
https://arxiv.org/abs/2212.08467
https://doi.org/10.1103/PhysRevD.108.074513
https://arxiv.org/abs/2308.03125


P
o
S
(
E
u
r
o
P
L
E
x
2
0
2
3
)
0
1
9

Approaches to the Inverse Problem Alessandro Lupo

[19] A. Barone, S. Hashimoto, A. Jüttner, T. Kaneko and R. Kellermann, Approaches to inclusive
semileptonic B(B) -meson decays from Lattice QCD, JHEP 07 (2023) 145 [2305.14092].

[20] C. Alexandrou et al., Inclusive hadronic decay rate of the g lepton from lattice QCD: the D̄B
flavour channel and the Cabibbo angle, 2403.05404.

[21] H.B. Meyer, A Calculation of the shear viscosity in SU(3) gluodynamics, Phys. Rev. D 76
(2007) 101701 [0704.1801].

[22] H.B. Meyer, A Calculation of the bulk viscosity in SU(3) gluodynamics, Phys. Rev. Lett. 100
(2008) 162001 [0710.3717].

[23] G. Aarts, C. Allton, J. Foley, S. Hands and S. Kim, Spectral functions at small energies and
the electrical conductivity in hot, quenched lattice QCD, Phys. Rev. Lett. 99 (2007) 022002
[hep-lat/0703008].

[24] S. Caron-Huot, M. Laine and G.D. Moore, A Way to estimate the heavy quark thermalization
rate from the lattice, JHEP 04 (2009) 053 [0901.1195].

[25] H.B. Meyer, Transport Properties of the Quark-Gluon Plasma: A Lattice QCD Perspective,
Eur. Phys. J. A 47 (2011) 86 [1104.3708].

[26] G. Aarts, C. Allton, S. Kim, M.P. Lombardo, M.B. Oktay, S.M. Ryan et al., What happens to
the Υ and [1 in the quark-gluon plasma? Bottomonium spectral functions from lattice QCD,
JHEP 11 (2011) 103 [1109.4496].

[27] G. Aarts, C. Allton, S. Kim, M.P. Lombardo, M.B. Oktay, S.M. Ryan et al., S wave
bottomonium states moving in a quark-gluon plasma from lattice NRQCD, JHEP 03 (2013)
084 [1210.2903].

[28] G. Aarts, C. Allton, S. Kim, M.P. Lombardo, S.M. Ryan and J.I. Skullerud, Melting of P
wave bottomonium states in the quark-gluon plasma from lattice NRQCD, JHEP 12 (2013)
064 [1310.5467].

[29] G. Aarts, C. Allton, A. Amato, P. Giudice, S. Hands and J.-I. Skullerud, Electrical
conductivity and charge diffusion in thermal QCD from the lattice, JHEP 02 (2015) 186
[1412.6411].

[30] H.-T. Ding, F. Karsch and S. Mukherjee, Thermodynamics of strong-interaction matter from
Lattice QCD, Int. J. Mod. Phys. E 24 (2015) 1530007 [1504.05274].

[31] A. Rothkopf, Heavy Quarkonium in Extreme Conditions, Phys. Rept. 858 (2020) 1
[1912.02253].

[32] E. Itou and Y. Nagai, Sparse modeling approach to obtaining the shear viscosity from
smeared correlation functions, JHEP 07 (2020) 007 [2004.02426].

[33] L. Altenkort, A.M. Eller, A. Francis, O. Kaczmarek, L. Mazur, G.D. Moore et al., Viscosity
of pure-glue QCD from the lattice, Phys. Rev. D 108 (2023) 014503 [2211.08230].

12

https://doi.org/10.1007/JHEP07(2023)145
https://arxiv.org/abs/2305.14092
https://arxiv.org/abs/2403.05404
https://doi.org/10.1103/PhysRevD.76.101701
https://doi.org/10.1103/PhysRevD.76.101701
https://arxiv.org/abs/0704.1801
https://doi.org/10.1103/PhysRevLett.100.162001
https://doi.org/10.1103/PhysRevLett.100.162001
https://arxiv.org/abs/0710.3717
https://doi.org/10.1103/PhysRevLett.99.022002
https://arxiv.org/abs/hep-lat/0703008
https://doi.org/10.1088/1126-6708/2009/04/053
https://arxiv.org/abs/0901.1195
https://doi.org/10.1140/epja/i2011-11086-3
https://arxiv.org/abs/1104.3708
https://doi.org/10.1007/JHEP11(2011)103
https://arxiv.org/abs/1109.4496
https://doi.org/10.1007/JHEP03(2013)084
https://doi.org/10.1007/JHEP03(2013)084
https://arxiv.org/abs/1210.2903
https://doi.org/10.1007/JHEP12(2013)064
https://doi.org/10.1007/JHEP12(2013)064
https://arxiv.org/abs/1310.5467
https://doi.org/10.1007/JHEP02(2015)186
https://arxiv.org/abs/1412.6411
https://doi.org/10.1142/S0218301315300076
https://arxiv.org/abs/1504.05274
https://doi.org/10.1016/j.physrep.2020.02.006
https://arxiv.org/abs/1912.02253
https://doi.org/10.1007/JHEP07(2020)007
https://arxiv.org/abs/2004.02426
https://doi.org/10.1103/PhysRevD.108.014503
https://arxiv.org/abs/2211.08230


P
o
S
(
E
u
r
o
P
L
E
x
2
0
2
3
)
0
1
9

Approaches to the Inverse Problem Alessandro Lupo

[34] C. Bonanno, F. D’Angelo, M. D’Elia, L. Maio and M. Naviglio, Sphaleron rate from a
modified Backus-Gilbert inversion method, Phys. Rev. D 108 (2023) 074515 [2305.17120].

[35] C. Bonanno, F. D’Angelo, M. D’Elia, L. Maio and M. Naviglio, Sphaleron Rate of Nf=2+1
QCD, Phys. Rev. Lett. 132 (2024) 051903 [2308.01287].

[36] G. Aarts et al., Phase Transitions in Particle Physics: Results and Perspectives from Lattice
Quantum Chromo-Dynamics, Prog. Part. Nucl. Phys. 133 (2023) 104070 [2301.04382].

[37] W. Furmanski and R. Petronzio, A method of analyzing the scaling violation of inclusive
spectra in hard processes, Nuclear Physics B 195 (1982) 237.

[38] G. Backus and F. Gilbert, The Resolving Power of Gross Earth Data, Geophysical Journal
International 16 (1968) 169
[https://academic.oup.com/gji/article-pdf/16/2/169/5891044/16-2-169.pdf].

[39] F.P. Pijpers and M.J. Thompson, The sola method for helioseismic inversion, Astronomy and
Astrophysics (ISSN 0004-6361), vol. 281, no. 1, p. 231-240 281 (1994) 231.

[40] C. Zaroli, Global seismic tomography using Backus–Gilbert inversion, Geophysical Journal
International 207 (2016) 876
[https://academic.oup.com/gji/article-pdf/207/2/876/8142481/ggw315.pdf].

[41] L. Del Debbio, T. Giani and M. Wilson, Bayesian approach to inverse problems: an
application to NNPDF closure testing, Eur. Phys. J. C 82 (2022) 330 [2111.05787].

13

https://doi.org/10.1103/PhysRevD.108.074515
https://arxiv.org/abs/2305.17120
https://doi.org/10.1103/PhysRevLett.132.051903
https://arxiv.org/abs/2308.01287
https://doi.org/10.1016/j.ppnp.2023.104070
https://arxiv.org/abs/2301.04382
https://doi.org/https://doi.org/10.1016/0550-3213(82)90398-4
https://doi.org/10.1111/j.1365-246X.1968.tb00216.x
https://doi.org/10.1111/j.1365-246X.1968.tb00216.x
https://arxiv.org/abs/https://academic.oup.com/gji/article-pdf/16/2/169/5891044/16-2-169.pdf
https://doi.org/10.1093/gji/ggw315
https://doi.org/10.1093/gji/ggw315
https://arxiv.org/abs/https://academic.oup.com/gji/article-pdf/207/2/876/8142481/ggw315.pdf
https://doi.org/10.1140/epjc/s10052-022-10297-x
https://arxiv.org/abs/2111.05787

	Introduction
	The HLT procedure
	Bayesian methods: interplay between smearing and priors
	Systematic validation against pseudodata
	Conclusion
	Acknowledgments

