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1. Introduction

Hadronic resonances are unstable particles that decay through the strong force, manifesting
the “physics of binding and decay” [1] from QCD. Most observed hadrons are resonances and
they are expected to produce typical enhancements on experimental cross-sections in which they
act as intermediate states [2]. For example, the ρ(770) resonance is present in electron-positron
scattering and plays a role in the calculation of the muon g − 2 [3]. Both ρ(770) and K∗(892)
resonances feature in processes such as B-meson decays, which are being examined for potential
signs of physics beyond the Standard Model [4]. In a process-independent way, resonances can be
associated to singularities of analytically continued scattering amplitudes. In principle, this does
not depend on a specific realisation or modelling of the scattering process, and thus provides a more
universal description of resonances.

Lattice quantum chromodynamics (QCD) allows for first-principle QCD calculations achieved
through a systematically improvable method. It consists of discretising a finite spacetime in
Euclidean signature, which can be translated into a numerical problem. However, the study of
dynamical properties is considerably challenged by the Euclidean metric. The understanding of
finite-volume effects on the lattice spectrum [5–10] allied to the creation of novel algorithms in
lattice QCD [11, 12] have allowed for rigorous theoretical determinations of resonances in the
past decade [1, 13], including the ρ and K∗ [14–17]. However, the physical limits of scattering
determinations from the lattice are still largely unexplored due to their high computational cost.
In particular, most works to date have employed higher-than-physical pion masses. Due to the
non-trivial quark-mass dependence of resonance poles from QCD dynamics, extrapolations from
large masses can introduce non-negligible systematics. Performing lattice computations at physical
pion masses is thus a fundamental step towards reliable Standard Model predictions that depend on
resonance features.

In this proceedings, we review the basic aspects of our determination of the ρ(770) and
K∗(892) resonance parameters using lattice QCD at a physical pion mass I. This is performed
on the physical-point RBC-UKQCD domain-wall fermion lattice detailed in Table 1. After an
initial numerical exploration involving the development of dedicated software [20, 21], we built
a diversified operator basis and computed two-point correlation functions in various momentum
frames using the distillation method [11]. The low-lying lattice spectrum was extracted by solving
a generalised eigenvalue problem (GEVP) on the associated matrix of correlators. Finally, the
so-called Lüscher formalism was employed to constrain the ππ, I = 1 and Kπ, I = 1/2 phase shifts
in P-wave, where the ρ and K∗ feature as resonances, respectively. The analytical continuation
of different phase-shift models leads to the resonance pole positions, which are taken as our
final result. We outline the model-averaging procedure that results in the estimation of analysis
systematics involved on this lattice calculation.

N3 × Nt a L mπL amπ amK

483 × 96 ≈ 0.114 fm 5.476(2) fm 3.863(5) 138.5(2)MeV 498.9(4)MeV

Table 1: Physical-point domain wall Nf = 2 + 1 ensemble used in this work [22].

INow published in Refs. [18, 19].
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2. Lattice Spectroscopy

2.1 Interpolators

We start by considering a basis of operators with significant overlap to the low-lying states with
the same quantum numbers as the ρ and K∗. We use local operators of the type

OV (x) ∼ q̄V (x)γq′V (x), V ∈ {ρ+,K∗+} , (1)

where q is a light or strange quark field and γ = (γx, γy, γz) are the spatial Dirac matrices.
Additionally, we employ two-bilinear interpolators

OMM′(x, y) ∼ q̄1(x)γ5q2(x) q̄′1(y)γ5q′2(y), M M ′ ∈ {ππ,Kπ} , (2)

which contain an appropriate linear combination of pseudoscalar bilinears interpolating states with
the K and π quantum numbers. Operators with well-defined spatial momentum are obtained by
Fourier-projections of the various spatial coordinates. Note that the isospin projection into I = 1/2
for Kπ and I = 1 for ππ is left implicit in the above. The operator labels are based on a conventional
quark-model picture of the hadronic states, and cannot be directly related to lattice QCD states.
In fact, previous studies showed that at least both bilinear and two-bilinear type of operators are
necessary to reliably extract the low-lying lattice spectrum [23].

Channel Irreps Λ[d]
Kπ T1u[000], E[001], B1[110], B2[110], E[111], E[002]
ππ all above + A1[001], A1[110], A1[111], A1[002]

Table 2: Irreps of the cubic symmetries (times spatial inversion) considered in this work [24]. They
do not feature mixed even and odd infinite-volume partial waves, and thus only contain leading P-wave
contributions [25].

The formulation of QCD on a finite volume breaks rotational symmetry, restricting the allowed
momenta carried by lattice states. For integer intrinsical spin, states at rest will be labeled by
irreducible representations (irreps)Λ of the cubic group, instead of irreps of SO(3) identified by the
angular momentum J [26]. A similar consideration can be done for moving states now in relation to
subgroups of the cubic symmetry together with spatial inversions [27]. The interpolators defined in
Eqs. (1) and (2) do not transform irreducibly under these symmetries and thus need to be projected
into definite Λ. Given that each bilinear in those interpolators can be momentum-projected into
different spatial p, the irrep projection can be achieved through the group-theoretic formula [24]

OΛ(p1,p2, . . . , t) =
∑
R∈G

BΛ(R) R̂O(p1,p2, . . . , t)R̂−1 , (3)

where R represents elements of the cubic (sub) groupG and the coefficients BΛ encode the associated
Clebsch-Gordan coefficients. This yields OΛV (P) and OΛMM′(p1,p2, t), where the total momentum
is given by P = p1 + p2. We only consider irreps whose mapping into infinite-volume angular
momentum is dominated by P-wave, and where P2 ≤ 4(2π/L)2, as listed in Table 2.
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2.2 Distillation

It is a challenging task to compute two-point correlation functions 〈O′(t ′)O†(t)〉 with the
operators defined above, particularly when O′ = O = OMM′. Partly, this is due to the need of
estimating quark propagators D−1(x, x ′) = 〈q(x)q̄(x ′)〉 from all lattice sites x ′ to all lattice sites x.
We use the so-called distillation method [11, 28], defined by the smearing kernel onto the low-mode
subspace of the gauge-covariant 3D-Laplacian −∇2

ab
(t),

�(t) =
Nvec∑
k=1

vk(t)vk(t)† , (4)

where vk(t) are the Nvec low-lying eigenvectors of ∇2
ab
. Together with link smearing [29], this

helps suppressing high-lying modes and thus enhances the information from the low-energy states
contained in the correlation functions.

In distillation, the quark propagator is numerically computed through inversions of the Dirac
operator D over the Laplacian eigenvectors, i.e. D−1vk . This leads to the so-called perambulator

τ
[dt ]

( f )
(t) = v(t)†D−1(t, dt )v(dt ) δtdt (5)

where the index [dt ] trivially projects out a time slice t II. This smeared propagator-like object can
be used to assemble “sink” vectors ϕ[dt ]

( f )
(t) ∼ v(t)τ[dt ]

( f )
(t), which can be combined with the “source”

vectors %[dt ](t) ∼ v(t)δtdt to form a meson field(
M
( f )
Γ

) [d1
t ][d

2
t ](p, t) ∼

∑
x

e−ip·x tr
[
%[d

1
t ](x, t)† Γ ϕ[d

2
t ]

( f )
(x, t)

]
, (6)

where the spatial argument x was pulled out to express the momentum projection into p. This is
the building block for computing all correlators in this work, and in Figure 1 an example Wick
contraction appearing in a Kπ-like correlation function is given.

M
(l)

γ5 (p2, t)

M
(l)

γ5 (p1, t) M
(s)

γ5 (p′1,0)

M
(l)

γ5 (p′2,0) M
(l)

γ5 (p2, t)

M
(l)

γ5 (p1, t) M
(s)

γ5 (p′1,0)

M
(l)

γ5 (p′2,0)

M
(l)

γ5 (p1, t) M
(s)

γ5 (p′1,0)

M
(l)

γ5 (p2, t) M
(l)

γ5 (p′2,0)

Figure 1: Wick contraction diagram contributing to the 〈OKπ(p1,p2, t)OKπ(p′1,p
′
2,0)

†〉 correlator in terms
of meson fields (6). A line means matrix product and a closed loop means a trace over all dilution indices.
The quark flavour labels f = l, s mean light and strange, respectively.

We developed distillation within the workflow management system Hadrons [30–32] on top
of the C++ lattice library Grid, which implements domain-wall fermions and various other lat-
tice utilities [33]. In the production phase, we adopted Nvec = 64 (see [20, 21]) and processed

IIThe dilution-index notation is used in the stochastic version of distillation [28], and we employ it here only for
defining the matrix structure of Eq. (6). From the full dilution index, [d] = [dt , dα, dk ], we leave the trivial indices dα
and dk implicit in the matrix notation.
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90 gauge configurations of the physical pion ensemble (see Table 1). All Nt = 96 source
time translations of the Dirac propagators were computed, allowing for averaged correlators,
i.e. N−1

t

∑Nt

ξ=1〈O
′(ξ + t)O†(ξ)〉, and consequently improved statistics.

In Figure 2 we illustrate a schematic Hadrons workflow for producing the meson field Eq. (6).
Based on the dataflow programming [30], the data gets transformed in the direction of the arrows.
It starts with input parameters and modules (orange), which are followed by distillation modules
(red), and finally a meson field output is saved to disk on a dedicated file format (violet). The
perambulator module either computes the necessary Dirac matrix inversions (via solver) or loads
a file from disk. The DistilMesonFieldRelative module with standard input yields meson
fieldsM[t][t

′]

Γ
(p, t), where quark lines have support only on one sink time slice t ′ for a given time

source t [31].

LapEvec

nVec,

Lanczos, ...

ExactDistillation

gauge_stout

ExactDistillation

Perambulator timeSources, ...

solver

DistilMesonFieldRelative

Meson field file "{gamma}_p{mom}.h5"

gamma, momenta,

deltaT=0, ...

Figure 2: Exact distillation workflow for a meson field production in Hadrons, starting from a gauge
configuration and distillation-related parameters [31]. For an example of code implementing this workflow,
see Ref. [32].

2.3 Generalised Eigenvalue Problem

We assemble the matrix of two-point functions CXZ (t) ≡ 〈OX(t)OZ (0)†〉 from the correlation
functions computed through distillation, where the compound indices X, Z collectively represent
spatial momenta projection, flavour bilinear and irrep quantum numbers of operators. We then
solve the so-called generalised eigenvalue problem (GEVP)

C(t)un(t) = λn(t)C(t0)un(t) , (7)

where the eigenvalues have the asymptotic form λn(t) → Zn exp(−Ent ) for t, t0 � 1 with correc-
tions exponentially suppressed by nearby energy gaps [34, 35]. In this work, the auxiliary time is
fixed to a sufficiently large value t0 = 3 and the asymptotic t-dependence of λn is used to statisti-
cally constrain the energies En. The GEVP is solved separately for each cubic symmetry irrep from
Table 2.
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t/a
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T1u[000]

normalised overlaps
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K1π1

K2π2
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K4π4

V
K1π1

K2π2
K3π3

K4π4

V
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K2π2

K3π3
K4π4

Figure 3: Overlaps from each operator (right) to the states represented by effective masses (left) in the
T1u[000] rest-frame irrep with K∗ quantum numbers. We omit the error bars on the overlaps as they do not
affect the visualisation. The effective energies were boosted to CM in the same way as En

cm.

To statistically estimate each lattice energy, wefit the single-exponentialmodelλnfit(t) = Zn
fite
−tEn

fit

to each corresponding λn within a certain range [tmin, tmax] of time slices (“fit range”). This is imple-
mented through the minimisation of a standard chi-squared function, where correlations between
time slices are taken into account through a bootstrap estimate of the covariance matrix [18]. The
statistical uncertainties on the data are propagated into En

fit also via the bootstrap method. For later
use, the resulting model energies En

fit are boosted to the CM via the continuum dispersion relation,

defining En
cm =

√
(En

fit)
2 − P2, on each lattice irrep.

The onset of the large-t regime can be visualised through the log effective mass

mn
eff(t) = log

λn(t)
λn(t + 1)

, (8)

which is exemplified in Figure 3 for the Kπ system. The effective overlap of the state n to the
operator Oi can be given by

Zni
eff (t) = [u

†
n(t)C(t0)]i em

n
eff(t)t0/2, (9)

whose value at a sufficiently large times is also shown in Figure 3 for a particular irrep. This
illustrates the relative importance of a given operator towards extracting the low-lying spectrum.

3. Scattering

The study of scattering processes is central to this work. In scattering theory, it is usual to
define in/out states characterised by well-defined spatial momenta. Interactions are taken to have
finite duration and, at asymptotic times t → ±∞, such states are assumed to be sufficiently far
apart [36]. The scattering S-matrix is then defined as the map between in/out states, i.e.

〈p1p2 . . . ; out | q1q2 . . . ; in〉 ≡ 〈p1p2 . . . | S | q1q2 . . .〉 , (10)

6
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related to the so-called scattering amplitude t via S = 1 + it. In phenomenology, one is often
interested in the partial-wave components of the quantities above, labeled by `. For elastic 2 → 2
scattering, the t-matrix can be written as

t`(Ecm) =
1

cot δ`(Ecm) − i
, (11)

where the phase shift δ`(Ecm) depends only on the CM energy.

3.1 Finite-volume Method

Lattice QCD calculations are done on a finite volume and Euclidean spacetime metric. This
yields the extraction of scattering amplitudes from lattice simulations intrinsically challenging. Note
that resonances are not eigenstates of the Hamiltonian, which antecipates an intricate manifestation
of resonance physics in lattice observables.

Because of the Euclidean signature, it is a tough task to effectively translate lattice correlation
functions to Minkowski spacetime, where conventional quantum field theory techniques can be
used [37, 38]. The compactification of QCD into a finite volume further distorts its spectral
properties. For example, in a three-dimensional spatial box of size L with a field obeying periodic
boundary conditions, momenta are restricted to the discrete values p = 2π

L n, n ∈ Z3,. Other
typical features of Euclidean correlators on the complex plane are also affected, e.g. threshold
branch cuts, which on the lattice emerge as poles on the imaginary temporal axis, as depicted in
Figure 4.

Figure 4: Scheme of amplitude’s complex energy plane in the infinite volume (left), followed by Euclidean
rotation (middle), and then compactification in space (right).

In the so-called Lüscher formalism, the finite-volume corrections to the spectrum in a periodic
box are related to the two-particle scattering amplitude up to exponentially suppressed volume
effects [5–7]. This was originally developed in the elastic regime for degenerate-mass particles
overall at rest, and was later extended to general moving frames [8] and non-identical particles [25,
39]. This was also developed for a relativistic field theory [9], extended to multiple channels [40]
and spinning particles [41].

The central object of the finite-volume formalism is the quantisation condition, which re-
lates power-like finite-volume corrections on the spectrum to the elastic two-particle scattering
amplitude, [9]

det
[
1 + iM

(
Ecm(L)

)
F
(
Ecm(L), L

) ]
= 0 , (12)

7
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where F is a known function and wemade the L-dependence encoding the finite-volume corrections
explicit. Note that both F andM depend on the CM energy Ecm and satisfy (12) precisely at the
finite-volume energies Ecm(L). Further note that Eq.(12) contains a determinant over angular
momentum indices (`,m), which can be block-diagonalised into lattice irreps Λ. In the case that
only a single partial wave is relevant, that can be written as

δ1
(
Ecm(L)

)
= nπ − φΛ

(
Ecm(L), L,m1,m2

)
, n ∈ Z , (13)

where φΛ contains the angular components of F which project it into a definite lattice irrep
Λ [17, 42]. It also depends on the rest-frame masses of the scattered particles, m1 and m2.

3.2 Pole Parameters

A resonance, say K∗(892), can be viewed as an intermediate state of a scattering process such
as Kπ → K∗(892) → Kπ. This is typically manifest as an enhancement of the total cross-section
around the resonance rest mass. The width of a resonance is directly related to its decay width. In
phenomenology, it is usual to parameterise the scattering phase shift through a Breit-Wigner-like
distribution featuring a mass mBW , a width ΓBW , among other parameters [2].

Figure 5: Imaginary parts of the multi-valued scattering amplitude. [2] The resonance poles appear on the
second (“unphysical”) sheet (red), affecting observables on the real-s line (blue) at the first (“physical”) sheet.

A model-independent definition of resonances relates them to certain complex-energy sin-
gularities of partial-wave scattering amplitudes under analytical continuation. This description
includes the pole position, written in terms of a mass M and width Γ as

√
sR = M −

i
2
Γ , (14)

but also residues which are related to effective couplings [2]. From unitarity and causality con-
straints, resonance poles are required to appear on the second (or “unphysical”) Riemann sheet of
the amplitude t [43]. Figure 5 illustrates the singularities contained on an example amplitude and
how they are analytically connected to the real axis behaviour, where scattering takes place.

4. Data Analysis

We now summarise the statistical analysis of the Kπ and ππ scattering, taking into account
the fit range systematic in the phase-shift and pole parameters determination. Because there is no

8
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reference to the spacetime metric on Ecm(L) in the quantisation condition (13), the lattice energies
{Ecm} computed from the GEVP eigenvalues can be used to extract the infinite-volume scattering
phase shift at fixed L. For example, one could directly compute the phase shift at the discrete
lattice energies. However, we aim to compute complex-energy poles from the amplitude, which can
be achieved by constraining phase-shift models and analytically continuing them into the complex
plane [14, 17].

Given a model δmod
1 with parameters grouped into a vector αmod, we can invert Eq. (13)

to obtain a set of finite-volume energies {Ecm(αmod)}. The correlated difference between lattice
energies and the ones predicted by the model leads to a chi-squared function whose minimisation
leads to the constrained model parameters [44]. The resonance pole positions (14) can be found on
the unphysical sheet of the model amplitudes, tmod(

√
s) =

(
cot δmod

1 (
√

s)|αmod − i
)−1, for complex

√
s. Depending on the model, this can be done either exactly or through a numerical procedure

computing the resonance pole position within a certain small tolerance [18]. In this work, both the
Breit-Wigner (BW) and the effective range expansion phase-shift models are employed.

We devise a procedure to estimate the systematics due to the variation of phase-shift model
and GEVP eigenvalue fit ranges, inspired on recent calculations based on the Akaike information
criterion (AIC) [45–48]

AIC = χ2 + 2npar − ndata , (15)

where χ2 is the chi-squared value resulting from a given fit, npar is the number of model parameters
and ndata the number of data points. The total systematic is based on the spread of the distribution of
resonance parameters weighted by wt(f,mod) ∝ exp

[
−1

2AICt(f,mod)
]
, where AICt is the sum of the

AICcorr’s coming from all eigenvalue fits and the AICPS from the phase-shift fit, given a collection of
fit ranges {f(1), f(2), . . .} ≡ f. This distribution is not known a priori and the number of combinations
f is too high for a brute-force computation. We instead resort to importance sampling with proposal
distribution based on the AICcorr weights, which is at the end “reweighted” by the distribution based
on the AICPS weight [18]. We repeat this process varying the possible pool of fit ranges, thus
providing an account of the uncertainty due to the importance sampling.

We take the 96% wPS-weighted confidence interval over all samples as the “data-driven” sys-
tematic error. The statistical error is given by the bootstrap standard deviation of the wPS-weighted
mean. The final central values of the pole positions in lattice units are (MK∗,ΓK∗) ≈

(
893,51

)
MeV,

and (Mρ,Γρ) ≈
(
796,192

)
MeV. The data-driven systematic error amounts to 1 − 2% for the mass

and 15 − 20% for the width, while the statistical errors are three to five times smaller than this
systematic [18].

Is is a fact that the Lüscher formalism is strictly valid for finite-volume energies in the contin-
uum. As this work only uses one lattice spacing and thus no continuum extrapolation, we further
prescribe a systematic discretisation uncertainty of 5% based on naive power-counting arguments.
Due to other unaccounted for effects, e.g. three-particle thresholds and quark-mass mismatch, we
assume a total 6% “extra” systematic error. With the addition or not of this latter uncertainty,
the final ρ and K∗ pole positions are in reasonable agreement with the values derived directly
from experimental data using effective theories and dispersion relations [2]. For full details and
discussions, see Ref. [18, 19].

9
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5. Conclusions

We computed resonance parameters of the K∗(892) and ρ(770) particles using first-principles
lattice QCD simulations with a physical pion mass. We provided a thorough estimation of the
systematic error inherent to the analysis of the lattice data. This involved the exploration of a
model-averaging technique applied to the Lüscher method via the importance sampling of correlator
fit ranges.

We implemented the distillation method within the Grid and Hadrons lattice code environ-
ment, which allowed for a large-scale calculation performed on two supercomputers from the STFC
DiRAC Extreme Scaling service. Particularly expensive parts of the data were stored for further
applications and the raw lattice observables were made publicly available [18]. The open-source
nature of the code will allow for further improvements and applications [32, 33]. For instance, this
code is being used as part of a calculation of hadronic D decays [49].

In view of the prescribed discretisation error, the most immediate improvement of this calcu-
lation would be the addition of more lattice spacings. Followed by a continuum extrapolation [50],
this will allow for a even more direct comparison to experiment. Due to the high cost of the
domain-wall action, this is particularly challenging and will rely on the advancement of dedicated
lattice QCD software tailored to the next-generations of supercomputers.

Further use of the data or infrastructure developed in this work includes the study of the κ
and σ scalar resonances [17, 51] and the radiative Kγ → Kπ and πγ → ππ transitions [52, 53].
Another possibility for future work is based on the recent interest towards Standard Model tests
from experimental data in the search for new physics [54–57], which evidences the importance of
a first-principles determination of weak decays such as B → K∗`+`− and B → ρ`ν from lattice
QCD [40, 58–60].
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