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1. The puzzle

It has been more than a decade since the tension between the exclusive and inclusive deter-
minations of |𝑉𝑐𝑏 | and |𝑉𝑢𝑏 | is recognized (see [1] for a review). Other than various experimental
issues, the exclusive method relies on the lattice QCD calculation of the relevant form factors such
as 𝐵 → 𝐷 (∗)ℓ𝜈̄ or 𝐵 → 𝜋ℓ𝜈̄, for which some potential problems are discussed in a companion
talk [2], while the inclusive determination uses the perturbative QCD method supplemented by the
operator product expansion (OPE) to calculate the semi-leptonic decay rate at the quark level, which
corresponds to the sum over all possible final states. In OPE, one needs matrix elements of the
operators sandwiched by the initial 𝐵meson states; they can be determined in principle by fitting the
experimental data of the integrated decay rate with various kinematical cuts. Theoretically, both the
exclusive and inclusive methods are considered reliable and systematically improvable, so that the
tension poses a tremendous challenge for the theorists (assuming that the systematic uncertainties
in the experimental analysis is reliable).

Ideally, the puzzle can be solved if the decay rate was obtained both experimentally and
theoretically in the entire phase space of the semi-leptonic decays, i.e. the invariant mass 𝑚𝑋 of
the final hadronic state and its recoil momentum 𝒒2 (apart from the angular distributions), and
if the determinations of |𝑉𝑥𝑏 | at each point of the phase space all agreed. But, theoretically the
calculation of the differential decay rate is a formidable task even with the first-principles simulation
of lattice QCD, especially for excited hadronic final states. More tractable is a non-perturbative
lattice calculation of the integrated decay rate over some phase space, and it is the subject of this
talk. The integral over the phase space reduces to the inclusive rate when the entire phase space is
covered. There are many other observables such as those with kinematical cuts or some moments
of 𝑚𝑋 and so on.

In the following sections, I briefly outline the formalism to compute such integrated rates in
lattice QCD. Then, some discussions of potential systematic errors and future prospects follow.

2. Formalism for the inclusive rate

The differential rate of semi-leptonic decays 𝐵 → 𝑋𝑐ℓ𝜈̄ can be written as 𝑑Γ ∝ |𝑉𝑐𝑏 |2𝑙𝜇𝜈𝑊𝜇𝜈

using the structure function (or hadronic tensor)𝑊𝜇𝜈 (𝑝𝐵, 𝑞):

𝑊𝜇𝜈 =
∑︁
𝑋

(2𝜋)2𝛿 (4) (𝑝𝐵 − 𝑞 − 𝑝𝑋)
1

2𝑀𝐵

⟨𝐵(𝑝𝐵) |𝐽†𝜇 (0) |𝑋 (𝑝𝑋)⟩⟨𝑋 (𝑝𝑋) |𝐽𝜈 (0) |𝐵(𝑝𝐵)⟩, (1)

where the sum runs over all possible hadronic final states |𝑋 (𝑝𝑋)⟩ with momentum 𝑝𝑋 [3, 4].
The flavor-changing current 𝐽𝜇 = 𝑐𝛾𝜇 (1 − 𝛾5)𝑏 induces the weak decay, and the momentum 𝑞𝜇 is
transferred to the lepton pair ℓ and 𝜈̄. The leptonic tensor 𝑙𝜇𝜈 is a known kinematical factor. Since
the structure function is expressed as an imaginary part of the matrix element (sometimes called
the Compton amplitude)

𝑇𝜇𝜈 (𝑝𝐵, 𝑞) =
∫
𝑑4𝑥𝑒𝑖𝑞𝑥

1
2𝑀𝐵

⟨𝐵(𝑝𝐵) |T
{
𝐽†𝜇 (0)𝐽𝜈 (0)

}
|𝐵(𝑝𝐵)⟩ (2)

of a product of currents T{𝐽†𝜇 (𝑥)𝐽𝜈 (0)}, one can use OPE to approximate T{𝐽†𝜇 (0)𝐽𝜈 (0)} by a
series of local operators, such as 𝑏̄𝑏, 𝑏̄𝑫2𝑏, 𝑏̄𝜎 · 𝑩𝑏, and so on. It leads to an expansion in terms
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of inverse 𝑏 quark mass 1/𝑚𝑏, since the momentum flowing into the charm quark propagator is of
order of𝑚𝑏. This forms a basis of the perturbative estimates of the inclusive decay rate. The matrix
elements of the local operators sandwiched by the 𝐵meson states could be determined by fitting the
experimental data of various quantities. Some examples are shown, for instance, in [5], where the
lepton energy and hadronic invariant mass moments are fitted against the lepton energy cut applied
in the experimental analysis. Recent inclusive analysis includes the perturbative expansion to the
order of 𝛼2

𝑠 and the heavy quark expansion to 1/𝑚3
𝑏

(see, for instance, [6]).
Another important problem in the semi-leptonic 𝐵 meson decays is the “missing component”

of the fully inclusive rate. Namely, the sum of known exclusive decays such as 𝐵 → 𝐷 (∗)ℓ𝜈̄,
𝐷 (∗)𝜋ℓ𝜈̄, etc. is less than the measurement of the total inclusive rate by about 15%. (See Table XIV
of [1].) This needs to be understood within the experimental analysis, but theoretical information
about the decay form factors to excited state 𝐷 mesons would also be helpful. Some discussions
are found in the companion talk [2].

Concerning the “inclusive versus exclusive puzzle”, there is also a theoretical question about
the validity of the quark-hadron duality. Since the inclusive decays 𝐵 → 𝑋𝑐ℓ𝜈̄ are dominated by
the 𝑆-wave states 𝐷 and 𝐷∗ to about 2/3 of the total decay rate, there is not so much room left for
the excited states. The duality is expected to work only when the hadronic states are sufficiently
smeared, or summed, so that the details of the bound-state dynamics become irrelevant. Quantitative
estimate of the duality violation effect is, however, very difficult.

3. Formalism for the lattice calculation

On the lattice one can compute matrix elements of some operators. For the calculation of semi-
leptonic decay form factors of exclusive processes, the matrix element of the form ⟨𝐷 (𝑝′) |𝐽𝜇 |𝐵(𝑝)⟩
is computed. Similarly the Compton amplitude (2) can be computed on the Euclidean lattice, but
it corresponds to an unphysical kinematical setup. For example, the hadronic energy (𝑝𝐵 − 𝑞)0
accessible from the Fourier transform of the Euclidean lattice data does not correspond to the
physical states; a strategy to connect the lattice data to some physical observables was proposed in
[7], but the following method allows more direct calculation of experimentally measured quantities.

An alternative approach is to view the Compton amplitude (2) as a spectral function. One can
write the integrand of the matrix element as

⟨𝐵(0) |𝐽†𝜇 (−𝒒; 𝑡)𝛿(𝜔 − 𝐻̂)𝐽𝜈 (𝒒; 0) |𝐵(0)⟩ (3)

for a given energy 𝜔 = (𝑝𝐵 − 𝑞)0. The currents are Fourier transformed to the momentum space;
the temporal direction remains in the coordinate space and the energy𝜔 is specified by the 𝛿(𝜔− 𝐻̂)
with the QCD Hamiltonian 𝐻̂. The inclusive rate can then be expressed as an integral of (3) over 𝜔
and 𝒒2 with a weight factor (or a kernel function ) 𝐾 (𝜔; 𝒒2) determined by the kinematical factor.
Once this type of the spectral function was extracted from the lattice calculation, one can perform
the integral over 𝜔 and 𝒒2, but the extraction of the spectral function from the Euclidean lattice
calculation is known as a ill-posed inverse problem and only some approximate numerical solution
can be obtained [8].

3
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A concrete proposal to bypass this problem is given in [9]. One realizes that the integral over
the energy 𝜔 appearing in the expression of the decay rate can be expressed as∫

𝑑𝜔 𝐾 (𝜔; 𝒒2)⟨𝐵(0) |𝐽†𝜇 (−𝒒)𝛿(𝜔 − 𝐻̂)𝐽𝜈 (𝒒) |𝐵(0)⟩ = ⟨𝐵(0) |𝐽†𝜇 (−𝒒)𝐾 (𝐻̂; 𝒒2)𝐽𝜈 (𝒒) |𝐵(0)⟩. (4)

On the other hand, the Euclidean correlation function calculated on the lattice yields

⟨𝐵(0) |𝐽†𝜇 (−𝒒)𝑒−𝐻̂𝑡𝐽𝜈 (𝒒) |𝐵(0)⟩. (5)

Therefore, if there is an approximation of the form

𝐾 (𝐻̂) ?
= 𝑘0 + 𝑘1𝑒

−𝐻̂ + 𝑘2𝑒
−2𝐻̂ + · · · + 𝑘𝑁 𝑒−𝑁𝐻̂ , (6)

one can relate the integrated decay rate and the lattice correlators. Each term of the right hand side
corresponds to the correlator of a fixed time separation between the two current insertions.

The approximation of the form (6) can be implemented in various ways. Essentially, the
kernel 𝐾 (𝜔; 𝒒2) can be considered as a kind of smearing of the spectral function, as can be seen
in (4), a weighted integral over 𝜔. Solving the spectral function is an ill-posed problem, but once
it is smeared over some energy range, it may become much easier. The form of the smearing
cannot be controlled in the original form of the Backus-Gilbert method [8], but it was realized that
the smearing can be specified by including as a minimization in the Backus-Gilbert method [10].
Another class of the approximation using an orthogonal polynomial method was also proposed [11].
We mainly discuss on this Chebyshev polynomial method in the following.

4. Kernel approximation

The kernel to be approximated has the following form:

𝐾 (𝜔) ∼ 𝑒2𝜔𝑡0 (𝑚𝐵 − 𝜔)𝑙𝜃 (𝑚𝐵 − |𝒒 | − 𝜔). (7)

Here, the factor 𝑒2𝜔𝑡0 is introduced to keep a non-zero time separation 𝑡0 between the two currents.
The configuration of having two currents in the equal Euclidean time reflects the contributions from
both 𝑡 > 0 and 𝑡 < 0, each of which corresponds to different kinematical regions; to obtain the
semi-leptonic decays one has to restrict in 𝑡 > 0. The next factor (𝑚𝐵−𝜔)𝑙 comes from the leptonic
tensor and 𝑙 = 0, 1 or 2. The Heaviside function 𝜃 (𝑚𝐵 − |𝒒 | − 𝜔) is introduced to implement the
kinematical upper limit of the 𝜔 integral. The lower limit can be set to zero or to any value below
the energy of the lowest hadronic state.

An example of the kernel function and its approximation are shown in Fig. 1. For clarity, we
take the Heaviside function as a kernel and ignore the factor 𝑒2𝜔𝑡0 and set 𝑙 = 0. The kernel function
has a discontinuity at the kinematical upper limit 𝜔 = 𝑚𝐷𝑠

− |𝒒 | (Fig. 1); we introduce a smoothing
(or smearing) to ease the polynomial approximation by replacing the Heaviside function 𝜃 (𝑥) by a
sigmoid function 𝜃𝜎 (𝑥) ≡ 1/(1 + 𝑒−𝑥/𝜎). The parameter 𝜎 represents the width of the smearing.
In the end, we have to take the limit 𝜎 → 0.

4
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Figure 1: Chebyshev approximation of the Heaviside function 𝜃 (𝑚𝐷𝑠
− |𝒒 | −𝜔. The order of the Chebyshev

polynomial is set to 𝑁 = 5 (red) or 𝑁 = 20 (orange). The Heaviside function is directly approximated (left)
or a sigmoid smoothing is introduced (right) with a smearing parameter 𝜎 = 0.2 (red) or 0.05 (orange). The
lower limit of the approximation is set to 𝜔0 = 0.9𝜔min, i.e. slightly below the kinematical lower limit. Plots
from [13].

The Chebyshev approximation is one of orthogonal polynomial expansions. (For the definitions
and various physics applications, see [12].) In our case, it is written as

𝐾 (𝐻̂) ≃
𝑁∑︁
𝑗=0
𝑐 𝑗𝑇𝑗 (𝑒−𝐻̂), (8)

where 𝑇𝑗 (𝑥) is the Chebyshev polynomial defined in the range [−1, +1]. (In practice, we use the
shifted Chebyshev polynomial𝑇∗

𝑗
(𝑥) ≡ 𝑇𝑗 (2𝑥−1) so that 𝑥 is defined in [0, 1].) The kernel operator

is sandwiched by the 𝐵 meson state |𝐵⟩, and it is evaluated with the operators 𝑒−𝐻̂𝑡 on the right
hand side appearing by expansing the Chebyshev polynomials. Each term simply corresponds the
(integer) time 𝑡 separation between the two currents.

The expansion in (8) is mathematically well-defined as 𝑇𝑗 (𝑥) forms a orthogonal basis; the
coefficients 𝑐 𝑗 can be easily calculated once the kernel function 𝐾 (𝜔) is given. Moreover, the
expansion is known to give the “best” approximation in the sense that the maximum deviation in
the range is minimal for a given order 𝑁 .

One important property of the Chebyshev polynomials is that the value is confined in the
region |𝑇𝑗 (𝑥) | ≤ 1. It then leads to a constraint |⟨𝐵|𝐽†𝑇𝑗 (𝑒−𝐻̂)𝐽 |𝐵⟩/⟨𝐵|𝐵⟩| ≤ 1, that comes
from an obvious condition 0 ≤ |𝑒−𝐻̂ | ≤ 1 for the Hamiltonian eigenvalues. Combining with
the expansion (8), this constraint gives a strict upper- and lower-limits of the estimate by taking
⟨𝐵|𝐽†𝑇𝑗 (𝑒−𝐻̂)𝐽 |𝐵⟩/⟨𝐵|𝐵⟩ = ±1 as two extreme cases for the ignored terms 𝑗 > 𝑁 . The systematic
error due to the approximation can thus be estimated strictly as

∑∞
𝑗=𝑁 |𝑐 𝑗 |. (Remember that the 𝑐 𝑗’s

are calculated at low cost, and 𝑐 𝑗 typically dumps exponentially for large 𝑗 .) This is an advantage
over other methods such as that of [10].
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Figure 2: 𝐵𝑠 → 𝑋ℓ𝜈̄ differential decay rate (divided by |𝒒 |). An example from [14] computed with 𝑚𝑏

lighter than the physical value. Different colors show the decomposition into four different channels: vector
(𝑉𝑉) or axial-vector (𝐴𝐴) current; parallel (∥) or perpendicular (⊥) polarization.

5. Early calculations

An early result for the differential decay rate (divided by |𝒒 |) from [9, 14] is shown in (2).
Here the initial 𝑏 quark is lighter than its physical value (about 3 GeV), so that the kinematical
upper-limit for 𝜔 is also made lower. The results for different channels are plotted separately as
a function of the recoil momentum squared 𝒒2. The channels are those of vector or axial-vector
current insertions, and of different orientation of the currents (parallel or perpendicular to 𝒒).

Also plotted by the dashed line is the expectation from the ground state (the 𝑆-wave 𝐷 and
𝐷∗ mesons) contributions. They are obtained from the form factor calculations associated with the
work [15, 16]. It turned out that the inclusive rate is saturated by the ground states, as anticipated
due to the smaller phase-space compared to the physical setup because of the smaller 𝑏-quark
mass. By inspecting the individual matrix elements ⟨𝐵|𝐽†𝑒−𝐻̂𝑡𝐽 |𝐵⟩/⟨𝐵|𝐵⟩, we can identify the
excited-state contributions, but their size is insignificant at the scale of this plot.

The results are compared with OPE in [14], where the perturbative calculation is performed to
𝑂 (𝛼𝑠) and the power corrections are included to 𝑂 (1/𝑚3

𝑏
). They are in good agreement, although

the systematic error of the OPE calculation is large because the lattice calculation is done at smaller
𝑏 quark mass, where the power corrections are enhanced.

First calculation at the physical 𝑏 quark mass is performed by [17]. In Fig. 3 the differential
decay rate (divided by |𝒒 |) is plotted for different choices of the kernel approximations, basically the
Chebyshev approximation and Backus-Gilbert method. The results are in good agreement among
the methods. Indeed, we confirmed that the resulting approximation curve of the kernel function is
very similar between Chebyshev and Backus-Gilbert. A slight deviation among different setup is
visible at large values of 𝒒2 depending on the choice of 𝜔0, the lower limit of the approximation. It
suggests that there is still some hidden uncertainty in the kernel approximation.

6
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Figure 3: 𝐵𝑠 → 𝑋ℓ𝜈̄ differential decay rate (divided by |𝒒 |) at the physical 𝑏 quark mass. The data are
from [17]. All channels are combined. Kernel approximation is performed with the Chebyshev polyno-
mial (CHEB), the Backus-Gilbert method (BGexp), or the Backus-Gilbert method in the Chebyshev basis
(BGcheb).

6. Systematic errors

This brings us to more detailed study of the systematic errors. In particular, the largest
momentum point of 𝑋𝑉𝑉 ∥ in Fig. 2 (the blue point around 𝒒2 = 0.9 GeV2) may suggest a problem:
the inclusive rate is significantly lower than the ground state (𝐷 meson) contribution.

The same channel, but for the 𝐷𝑠 meson decays, is studied in [13]. Near the maximum 𝒒2 the
kernel function has a narrow support from the lowest energy state

√︁
𝑚2 + 𝒒2 up to the upper limit

𝑚𝐷𝑠
− |𝒒 |. (The kinematical endpoint is defined by the limit where the lowest and the upper limit

meet.) As one can imagine from Fig. 1 the kernel approximation gets harder in this limit. Roughly
speaking, the polynomial of order 𝑁 allows the slope of the approximated kernel of about 𝑂 (𝑁),
which corresponds to the Heaviside-like change within the range of 𝜔 ∼ 1/𝑁 . When the support
of the kernel becomes as small as this width, the approximation would become imprecise.

In order to control such systematic effect, we introduce a smeared Heaviside function with
a width 𝜎 and set it to 𝜎 = 1/𝑁 . Then, the Chebyshev approximation at the order 𝑁 follow
the smeared kernel rather precisely. Even though the lattice data are not available for large time
separation, thus large 𝑁 , one can obtain the upper and lower limit of the estimate for arbitrary 𝑁
by setting their Chebyshev matrix elements of unknown higher orders to ±1 as mentioned above.
It is done in Fig. 4, and the estimate is shown as a function of 𝜎 = 1/𝑁 . Towards the limit of
𝜎 → 0, one can see that the error increases for the (differential) inclusive rate. Also plotted is
its contribution from the ground state, for which the energy is precisely known and the distortion
due to the kernel approximation can be traced. We find that the inclusive rate actually covers the
ground-state contribution for each value of 𝜎 = 1/𝑁; the limit of 𝜎 → 0 may be estimated by an
extrapolation. One may think that the error in the 𝜎 → 0 limit is too large to be useful, but one can
avoid the problem for this particular case because we know that the ground state saturates the decay
rate.

7
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Figure 4: Differential decay rate near the kinematical end-point for the channel of 𝑉𝑉 insertion parallel to
𝒒. The plot is against the smearing width 𝜎 = 1/𝑁 . The inclusive calculation (triangle) is plotted with
a bound obtained by setting the Chebyshev matrix elements of 𝑗 larger than 10 to ±1. The corresponding
ground-state contribution is given by circles, and its limit to 𝜎 → 0 is shown by a dashed line.

Another potentially important source of the systematic error is the finite volume effect. The
excited states consist of multi-hadron final states, and their spectrum becomes discrete in a finite
box and a systematic error of 1/𝐿 is expected. The size of such error can be estimated by assuming
the two-body spectrum and their amplitude [18].

7. Final remarks: towards understanding the puzzle

As outline above, there is a formulation to compute the inclusive decay rate using lattice QCD.
It doesn’t require the reconstruction of the spectral function, and one can avoid the ill-posed inverse
problem. The new method involves new problems, though. The kernel approximation is challenging
when the hard energy cutoff has to be implemented like the case of the inclusive decay rate. A
good news is that the systematic error can be rigorously estimated with the Chebyshev polynomial
method.

Some initial lattice studies are encouraging. Comparison with the OPE-based approach has
been made; the study should be extended to the calculations with the physical kinematics. Such
consistency check would finally establish the consistency among the theories of inclusive decays,
i.e. OPE and lattice. Eventually, the comparison should also be made for various moments, such as
those of lepton energy and hadronic mass. Lattice calculation of them can be performed in parallel
with the decay rate.

More detailed comparison among the OPE, lattice and experiments are possible. In addition
to the total decay rate and moments, one can consider any weighted integrals of the differential
decay rate. Each party (OPE, lattice, experiment) has its own advantages and weaknesses, and one
can reach the optimal solution after compromises. For instance, the lattice calculation is harder
and thus less precise for large recoil momenta, while the experiment is not able to cover too small

8
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momenta. The OPE method needs a sufficiently broad range of integral to avoid potential problems
due to the quark-hadron duality. Close collaborations among different parties would be crucial to
finally resolve the puzzle.
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