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We review recent developments of machine learning algorithms pertinent to the inverse renor-
malization group, which was originally established as a generative numerical method by Ron-
Swendsen-Brandt via the implementation of compatible Monte Carlo simulations. Inverse renor-
malization group methods enable the iterative generation of configurations for increasing lattice
size without the critical slowing down effect. We discuss the construction of inverse renormaliza-
tion group transformations with the use of convolutional neural networks and present applications
in models of statistical mechanics, lattice field theory, and disordered systems. We highlight the
case of the three-dimensional Edwards-Anderson spin glass, where the inverse renormalization
group can be employed to construct configurations for lattice volumes that have not yet been

accessed by dedicated supercomputers.
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1. Inverse Monte Carlo renormalization group

Inverse renormalization group methods were originally established as generative numerical
techniques by Ron-Swendsen-Brandt via the implementation of compatible Monte Carlo simula-
tions [1]. The authors implemented the method on configurations of the three-dimensional Ising
model with lattice volume V = 43 to construct inversely renormalized systems up to lattices of
V = 1283, The discussed approach relies on the implementation of a Monte Carlo technique to
ensure a computationally stable inverse transformation, is shown to evade the critical slowing down
effect for the case of the three-dimensional Ising model, and provides accurate calculations of the
critical exponents.

Machine learning algorithms have recently revolutionized multiple aspects of academia and
industry, and a natural question is whether neural networks could be employed to confront the
mathematically ill-defined problem of constructing inverse renormalization group transformations.
A straightforward approach would then consider the application of a standard real-space transfor-
mation with a rescaling factor of b, such as the majority rule, on original configurations of a given
lattice size L to construct renormalized configurations of lattice size L’ = L/b . One could then
present the renormalized configurations of L’ as input to a machine learning algorithm, such as a
set of (transposed) convolutions, in order to approximately reproduce the original configurations of
size L.

This implementation then defines the construction of a kernel for an inverse transformation
which can be arbitrarily optimized to approximate the inversion of a standard renormalization group
transformation, such as the majority rule, by increasing the set of variational parameters, namely
the weights and biases of the machine learning algorithm. The benefit of the discussed approach is
that if one considers only a set of convolutions in the machine learning implementation, which can
be applied irrespective of the lattice size, one could then increase the volume of the system for an
arbitrary number of times via consecutive applications of the inverse transformation.

Inverse renormalization group transformations have been constructed with a variety of machine
learning architectures, including convolutional neural networks, in Ising and Potts models [2—4].
Alternative constructions of inverse transformations are also obtained via the wavelet-conditional-
renormalization group [5]. Conceptually related approaches, which do not consider explicit con-
structions of inverse transformations, but combine insights from the renormalization group and
multigrid methods, have been applied in lattice gauge theories [6].

In this manuscript, we discuss the approximate construction of inverse renormalization group
transformations for systems with continuous degrees of freedom, a result first demonstrated in
the context of the ¢* lattice field theory [7]. We then present recent results on the construction
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Figure 1: Illustration of the application of a standard renormalization group transformation (RG) with the
majority rule and its approximate inversion (IRG) with the implementation of machine learning algorithms.
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of inverse renormalization group transformations for disordered systems [8], which enable the
iterative generation of configurations for lattice volumes that have not yet been accessed by dedicated
supercomputers.

2. Inverse renormalization group of quantum field theories

We consider the two-dimensional ¢* scalar field theory on a square lattice:
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where kp, ,u%, Ap are dimensionless parameters. For positive and fixed values of 4y > 0 and
kr, > 0, the system transitions from a symmetric to a broken-symmetry phase for a unique negative
value of u% < 0. The ¢* lattice field theory is simulated based on the Brower-Tamayo approach [9],
specifically by considering a combination of the Metropolis and Wolff algorithms. Here we consider
Ar, = 0.7, k;, = 1 and denote ,u% = K, where K. is the critical coupling.

To construct an inverse transformation we must first devise a standard real-space transformation
for the ¢* theory. We simulate the system for ,uzL = —0.9515 to obtain a set of original configurations
for lattice size L = 32 in each dimension. We separate the lattice into blocks of size b X b, where
b = 2 is the rescaling factor and we sum the degrees of freedom within each block. If the sum is
positive (negative) we select the renormalized degree of freedom as being equal to the mean of the
positive (negative) degrees of freedom. An important observation is that by reducing the lattice size
L by a rescaling factor of b as L’ = L/b within the context of the standard renormalization group,
we are simultaneously reducing the correlation length £ by an equal factor, namely &’ = £/b. Once
we have approximated the inversion of the standard renormalization group transformation we can
apply it, in principle, for an arbitrary number of times to iteratively increase the lattice size L of the
system. Thus in the context of the inverse renormalization group, the inversely renormalized lattice
size is L’ = bL with &’ = bé.

By observing how the correlation length is transformed in the standard and in the inverse
renormalization group we are able to obtain an intuitive understanding of the induced standard and
inverse renormalization group flows. Let us consider the case of the two-dimensional ¢* theory. In
the case of the standard renormalization group the application of each transformation reduces the
correlation length and as a result the renormalized system is driven deeper into either the symmetric
or the broken-symmetry phase. Conversely, in the case of the inverse renormalization group the
application of each inverse transformation increases the correlation length of the system, thus driving
it closer to the fixed point. These observations are established by considering a one-dimensional
renormalization group flow or, equivalently, under the consideration that the renormalized system
is an accurate representation of the original at a different value of the x> coupling. An important
insight is then that the correlation length diverges at the critical coupling 2 and it is exactly this
observation that provides a self-consistent approach to locate the critical fixed point in Monte Carlo
renormalization group methods: it is the point in parameter space where intensive observables
intersect.

An application of the standard renormalization group in the case of the ¢* theory is provided
in Fig. 2, which depicts the absolute value of the intensive magnetization for an original and
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Figure 2: Absolute value of the magnetization versus the squared mass for an original L and a renormalized
L’ system of identical lattice size. The renormalized system has been obtained via the application of a
standard renormalization group transformation. Figure from Ref. [7].
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Figure 3: Absolute value of the magnetization versus the squared mass for an original L and a renormalized
L’ system of identical lattice size. The renormalized systems have been obtained via the application of an
inverse renormalization group transformation. Figure from Ref. [7].

a renormalized system of identical lattice size L = 16. We observe that all of the qualitative
behaviour discussed in the previous paragraph is now reproduced. Specifically for p? < u2,
|m’| > |m| and equivalently u> > w2, |m’| < |m|. In addition, we observe an intersection for the
intensive magnetization which provides an estimate of the critical fixed point z2.

In Fig. 3 we depict results obtained with the inverse renormalization group. Specifically we
start with a lattice size of L = 32 and apply the inverse renormalization group iteratively until we
construct configurations of lattice size L’ = 512. We then compare the inversely renormalized
system against an original system of identical lattice size [10]. We observe the qualitative behaviour
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Figure 4: The transition to the overlap configurations for the case of the three-dimensional Edwards-
Anderson model and the implementation of a standard renormalization group transformation on the effective
spin glass which comprises overlap degrees of freedom. Figure from Ref [8].

discussed above for the inverse renormalization group, specifically for p?> > u2, |m’| < |m| and
equivalently u? < w2, |m’| > |m|. In addition we locate an intersection of observables in parameter
space which corresponds to the critical fixed point. We then utilize all of the renormalized systems,
up to L’ = 512 to extract two critical exponents. The results, which are in agreement with the
two-dimensional universality class, are provided in Ref. [7].

3. Inverse renormalization group of disordered systems

We consider as an example the three-dimensional Edwards-Anderson spin glass with replicas
o, T which comprise spins s, . The two-replica Hamiltonian is given by:

Eo',‘r =E,+E, =— Z Jij(sisj + l‘[l‘j), (2)
(i)
where s, = +1, (ij) are nearest-neighbors i and j, J;; is randomly sampled as J;; = 1, and {J;;}
is a realization of disorder.
The spin glass phase transition of the system can be studied by the overlap order parameter
which is defined over two replicas o, 7:

1
=5 D sl 3)

where V = L3 is the volume of the system, L the lattice size in each dimension, and p; = s;¢; defines
an overlap variable.

The concept of the renormalization group is nontrivial for the case of disordered systems. Since
we are interested in studying the spin glass phase transition based on the overlap order parameter,
we must devise a renormalization group transformation that is capable of properly transforming the
overlap order parameter. This implies that we require an effective Hamiltonian that is exclusively a
function of the overlap variables p. This type of effective Hamiltonian, implemented to describe the
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Figure 5: The iterative application of inverse renormalization group transformations for the case of the three-
dimensional Edwards-Anderson. Starting from a lattice size of L = 16 we apply the inverse transformations
until we construct L’ = 128. Figure from Ref [8].

effective spin glass, was first introduced by Haake-Lewenstein-Wilkens [11] and defines an effective
probability distribution

P, = 2|22 B2 5 Jij(1 + 0i0))]
s =

4
: 22U @

We remark that () defines a thermal average and [] is an averaging over the realizations of disorder.
The Haake-Lewenstein-Wilkens approach provides a formal mathematical mapping which maps
the spin glass phase transition of the original Hamiltonian into a phase transition that resembles
ferromagnetic ordering in the effective Hamiltonian of the overlap system. Renormalization group
transformations on this effective Hamiltonian [12, 13] were first established for the effective spin
glass by Wang and Swendsen [12]. Inverse renormalization group transformations were introduced
in Ref. [8]. The concept of transitioning to the overlap configurations, applying and inverting the
renormalization group is illustrated in Fig. 4.

We remark that spin glasses have posed some of the greatest challenges to the community
of computational physics in relation to how numerically challenging these systems are to simu-
late. These difficulties stem from the necessity of implementing replica exchange Monte Carlo
methods [14] on a wide range of temperatures, from the simulation of multiple real replicas, and
from the need to extensively monitor the equilibration of Markov chains. To provide direct evi-
dence, one needs only observe that the largest lattice volume simulated for the three-dimensional
Edwards-Anderson model is V = 40°, and this has been achieved exclusively via the use of special-
purpose machines, namely the dedicated Janus supercomputer [15]. Consequently, it is natural
to ask whether one can implement the inverse renormalization group, which enables the instant
generation of equilibrated configurations for increasing lattice size, to construct configurations for
lattice volumes that have not yet been accessed by supercomputers.

An illustration of the inverse renormalization group applied iteratively in the case of spin
glasses to arbitrarily increase the lattice size is provided in Fig. 5. Starting from lattices of size
L = 16 we apply the inverse transformation to construct lattices of size L = 128. The inversely
renormalized configurations can then be utilized to extract critical exponents of the system, and the
results are provided in Ref. [8].
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4. Conclusions

We have briefly reviewed inverse renormalization group methods, which provide a computa-
tionally efficient construction of equilibrated configurations for increasing lattice size in absence of
the critical slowing down effect. Specifically, we presented applications of the inverse renormaliza-
tion group in the research fields of lattice field theory and of disordered systems.

Monte Carlo renormalization group methods [16] provide well-defined standards to systemat-
ically improve calculations of critical exponents and to reduce pertinent errors. We remark that it
is conceptually straightforward to incorporate numerical exactness within inverse renormalization
group methods in order to enable the construction of exact configurations for increasing lattice
volumes that have not yet been accessed by dedicated supercomputers. This direction might be
particularly appealing in the context of disordered systems, given the prohibitively long simulations
required to sample these systems. Besides providing potential improvements in the sampling of
statistical systems, inverse renormalization group methods could potentially be extended to new
venues, for instance within the study of the phase transitions which emerge during the training of
machine learning algorithms [17].
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