Rejecting $g \rightarrow bb$ in the ATLAS *b*-jet High Level Trigger

Aims

- Reject bb-jets from $g \rightarrow bb$ splitting, common in the LHC
- Increase sensitivity for analyses that use the multi-*b*-jet trigger chains, e.g. $HH \rightarrow 4b$

b-jet Trigger

- Triggers require jets containing single-b-hadrons (b-jets) Would benefit from readout rate reduction
- Rejecting jets containing 2 *b*-hadrons (*bb*-jets) reduces background

$HH \rightarrow 4b$

- Highest branching ratio, however...
 - Large QCD background, including small angle $g \rightarrow b\overline{b}$ splitting

b-tagging Algorithm

Separates *b*-jets from *c*- & light-flavour jets

DL1dbb

- A Deep Neural Network
- Run 3 trigger *b*-tagger: GN1 a Graph Neural Network lacksquare
- Labels single *b*-jets and *bb*-jets inclusively as '*b*-jets' lacksquare
- **Problem**: *bb*-jets are identified as single-*b*-jets lacksquare

Compared to *b*-jets:

Further separates single-*b*-jets and *bb*-jets tagged by GN1

- Contains 2 *b*-hadrons instead of 1
- Lower fraction of energy carried by tracks from *b*-hadron decay
- Larger jet width

Inputs

- Secondary vertex & impact parameter info
- Jet kinematics
- Track variables

Outputs

bb-jet Rejection in GN1 and DL1dbb:

The combined tagging scheme:

*b***-jet discriminant** – log-likelihood ratio of jet probability outputs

rejection (70% WP) from the combined tagging e compared to GN1

Conclusions:

- DL1dbb offers a solution for rejecting bb-jets from gluon splitting in the HLT, and a potential reduction in readout rates
- Together with GN1, it can reduce more multijet background than GN1 alone while maintaining HH4b signal efficiency

Maggie Chen On behalf of the ATLAS Collaboration

