PROCEEDINGS

OF SCIENCE

FeynGame-2.1 — Feynman diagrams made easy

Robert Harlander,” Sven Yannick Klein and Magnus Schaaf
TTK, RWTH Aachen University, Sommerfeldstr. 16, 52056 Aachen, Germany
E-mail: robert.harlander@rwth-aachen.de,
sven.yannick.klein@rwth-aachen.de, magnus.schaaf@rwth-aachen.de

FeynGame is an open-source software tool to draw Feynman diagrams, but also to get acquainted
with their structure. This article reports on a number of new features which have been added
to FeynGame since its first release. These include full support of IATEX for the line and vertex
labels, the possibility to automatically include momentum arrows, new graphical elements, and
new pedagogical features. FeynGame is freely available

e as jar file from https://web.physik.rwth-aachen.de/user/harlander/
software/feyngame

¢ as source code from https://gitlab.com/feyngame/FeynGame

The European Physical Society Conference on High Energy Physics (EPS-HEP2023)
21-25 August 2023
Hamburg, Germany

*Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:robert.harlander@rwth-aachen.de
mailto:sven.yannick.klein@rwth-aachen.de
mailto:magnus.schaaf@rwth-aachen.de
https://web.physik.rwth-aachen.de/user/harlander/software/feyngame
https://web.physik.rwth-aachen.de/user/harlander/software/feyngame
https://gitlab.com/feyngame/FeynGame
https://pos.sissa.it/

FeynGame-2.1 — Feynman diagrams made easy Robert Harlander

1. Introduction

FeynGame is a Java tool for drawing and playing with Feynman diagrams. The initial idea for
its development was to provide a tool for high-school students, teachers, or undergraduate students
which allowed them to get familiar with the concept of Feynman diagrams in a playful way. While
this is still one of the main purposes of FeynGame, its functionality allows one to use it as a simple,
efficient, and flexible drawing tool for Feynman diagrams.

The main feature which distinguishes FeynGame from other drawing tools is that it is based
on particle physics models. This means that FeynGame “knows” about the Feynman rules of a
particular theory. This information is provided to FeynGame in the form of a model file. By default,
FeynGame assumes the Standard Model (SM) as the underlying theory, and the user may start from
the corresponding model file to build model files for simpler or more elaborate theories.

This model-based approach has two important consequences. On the one hand, every particle
of a particular theory may be given unique attributes, such as the line style or a text label. For
example, a gluon may be represented by a red spiral line and the label g, a Higgs boson by a dashed
blue line and the label H. This makes the drawing of Feynman diagrams very efficient. Assume
that one would like to distinguish top-quark lines in a Feynman diagram from other fermion lines
by drawing them a bit thicker and/or in a different color. As opposed to other Feynman diagram
drawing tools, there is no need to change the thickness and color of every top-quark line separately:
the top-quark line is simply a separate object with well-defined properties.

The second consequence of the model-based approach is that FeynGame can check whether a
particular Feynman diagram is compatible with the interactions of the underlying theory. Simply
pressing the key is sufficient to validate or disprove the Feynman diagram currently drawn on
the canvas corresponds as a physical amplitude.

The experienced particle physicist will scarcely need this feature, of course. Indeed, its main
application is educational in the context of the “game mode” of FeynGame. Currently, FeynGame
offers one type of game, named InFin (for Initial and Final), where the initial and final state
of an amplitude are generated (quasi-)randomly, and the player has to construct a suitable valid
(connected) Feynman diagram within the underlying particle model. This game can be configured
by the user to a high degree, as will be described in more detail in Section 4.

2. General functionalities

2.1 The main frame

The left part of Fig. 1 shows a screenshot of the so-called main frame of FeynGame. The
Feynman diagram in the upper part of that window (the canvas) has been drawn using a common
input device of the computer, such as the mouse or the trackpad, or most conveniently a stylus
device. For simplicity, we will refer to the input device as “mouse” in the following.

Below the canvas is a set of tiles, representing the lines (or particles) of the current model.
Selecting one of these tiles allows one to subsequently add the corresponding line to the canvas by
clicking and dragging. Trying this out, the user may soon discover a number of other quite unique
features of FeynGame:

FeynGame-2.1 — Feynman diagrams made easy Robert Harlander

XX) Untitled.fg - FeynGame v2.1.0 | 30.10.2023 14:46:53
File Edit View Help

0 EditFrame

|spiral v Color

[Invert line JOJ Double line

[LJ Draw arrow size: 5 Arrow dent

Arrow height 1 . Arrow position 0,5

Stroke size S 2 B anawre =
Wiggle height 13 [+ Wiggle length 14 [
Wiggle offset 8 [0 pashed 1

X (foo) [188 [i) X (head) 231

¥ (foot 123 [5] ¥ (head) 143 [+
) Show label: g

Rotation: L o sae 1
Part of path 0,109 E Distance to line 18 E

Set as default label parameters for this line type J

5 e o
i 5 v

(L) show the momentum arrow

L Set as default for momentum arrow for this line type)i

Figure 1: Left: The main frame of FeynGame. The tiles in the lower part of the frame represent
the current model, the diagram itself is displayed on the canvas. The diagram shown here contains
elements from the SM (gluons, Z-bosons), but also non-standard elements like the hashed oval
shape, and the double-line propagator which can be obtained via the menu items or the edit frame
(right).

* Initially, every line is drawn as a straight line. It can then be curved, for example by using the
mouse wheel. The end points remain fixed during the curving operation.

* If the end of one line is positioned close to a second line, FeynGame will connect the two
through a vertex (no matter if it is compatible with the current model or not). The second
line will formally be split into two by this operation, such that the vertex actually connects
three lines.

* By clicking and dragging the lines on the canvas with the mouse, they can easily be moved
(if clicked close to the line’s center), rotated, stretched, or shortened (if clicked close to one
of the line’s ends).

* Clicking and dragging a vertex will move the vertex and all the lines connected to it. This
makes it very simple to modify the shape of a Feynman diagram.

The completed diagram can then be exported in many formats such as JPG, PDF, or PostScript,
which will be in one-to-one correspondence to the image on the canvas (“what you see is what
you get”), modulo graphical aids like grid points and helper lines which can be activated in the
representation on the canvas.! It can also be copied to the clipboard and thus simply pasted to
other applications such as Keynote or PowerPoint as PNG image (i.e. with transparent background)
without the need of saving the image to disk first.

IThe export to PDF on MacOS sometimes does not correctly display the vertex markers. We recommend to export to
PostScript and subsequently convert to PDF, if desired.

FeynGame-2.1 — Feynman diagrams made easy Robert Harlander

2.2 The edit frame

The main frame is sufficient for quick drawings where all lines have their default attributes.
Deviations from the default can be achieved for example with the help of the edit frame, which
opens by pressing @ The content of this window depends on the active object (an object can be
activated by clicking on it in the canvas). For example, the right part of Fig. 1 shows the edit frame
for one of the external gluon lines of the diagram shown on the left. The edit frame allows one to
modify all attributes of the active object. For lines, this is the color, the width, the position on the
canvas, the curvature, the shape, the label, and much more. For vertex markers, one can also choose
a filling pattern, for example.

3. New drawing features

Numerous features and improvements have been added to FeynGame since its first release [1].
We highlight some of the most important ones here. Some of them are exemplified in Fig. 1. A
more detailed list will be provided in a forthcoming publication.

IATEX labels. FeynGame will interpret any text labels for lines or other graphical objects entered
via the edit frame or in the model file as IAIEX code.? As usual, the canvas will display the
compiled IKTEX symbols in the same way as they would appear on the exported image.

Momentum arrows. For each line, FeynGame can draw an associated momentum arrow and
optionally a momentum label. This feature is toggled by activating the line and pressing @,
or via the edit frame. The latter provides many options for the form and positioning of the
momentum arrow and its label.

Shapes. In addition to lines and vertices, the graphical elements “oval” and “rectangle” are avail-
able. They can be inserted into the canvas via the menu item , and deformed
and rotated as usual with the mouse. A full list of changeable attributes (fill color, fill pattern,
line color, etc.) is obtained via the edit frame.

Editing multiple objects. By clicking a tile in the current model, the attributes of that particular
line type can be modified. This affects all current and subsequently drawn lines on the canvas
in the current session. In order to adopt the changes also for future sessions, one can save the

model file using Save model file|,

Multiple model files. One can work with several different models at a time and switch between
them via tabs which appear between the canvas and the current model.

Model from diagram. When loading a diagram that was drawn in an earlier session and then
saved to disk, FeynGame can create a model which consists of all the lines and vertices which
appear in that diagram. This can be helpful if the model file which was used to produce the
diagram is unknown, for example because the diagram was produced by someone else. Using
the option to load several model files, it is then easy to add new lines to the diagram.

Zoom and shift. Diagrams can be moved as a whole on the canvas by pressing and click-
dragging the canvas. One can also zoom into and out of the canvas with the arrow-up and
arrow-down keys, or using the corresponding sub-items in .

2FeynGame uses the Java library JLaTeXMath for that purpose.

https://github.com/opencollab/jlatexmath

FeynGame-2.1 — Feynman diagrams made easy Robert Harlander

62 U (ﬁ]) ‘7ﬁ1 ((_ﬁz)) (—iQe 7211(1/1)

- —pa+ -pa+
i g,,zmz . +(1_§y)(P2+ P (p22 2p1)v1
(=p2+p1)* +ie ((=p2+p1)?)
Y . o _ R N R
et X(_lQeV‘(;llyl)Vw((“]l))ué]((_PZ""Il +71))

Figure 2: When drawing the diagram on the left with FeynGame, it will produce the amplitude
on the right.

Performance improvements. A number of issues related to CPU efficiency or graphical represen-
tations have been improved or resolved.

4. New educational features

So far, we have described new graphical features of FeynGame. However, also the pedagogical
part has been updated significantly.

4.1 Amplitude

Provided that the model file contains the required information on the Feynman rules, FeynGame
can produce the mathematical expression for the amplitude of a particular (valid) Feynman diagram.
Pressing will check the diagram for validity, and if this is passed, it will open a dialog box
where the user can choose between seeing the formula for the amplitude, or copying this formula
in I&TEX code to the clipboard which can simply be pasted into any I&IEX document.® The default
model contains all the required information for this. One can also ask FeynGame to display the
momentum routing through the diagram.

For example, if one uses the default model to draw the diagram for ete™ — e*e™ via the
s-channel exchange of a photon shown in the left part of Fig. 2, and subsequently asks FeynGame
for the amplitude, the IXTEX code will compile to the expression shown in the right part of Fig. 2.4

4.2 Level Generator

The initial and final states generated in the InFin game mode are not generated on the fly, but
are read by FeynGame from a control file, the so-called leve! file. FeynGame comes with a default
version of the level file, which is based on the SM. It lists a number of possible valid processes from
which FeynGame randomly picks one and displays its initial and final state particles on the canvas.
The player is asked to construct a connected Feynman diagram which mediates the process. If the
task is completed, Feyngame picks another pair of initial and final states from the level file.

If one wants to assume a different underlying particle model, one needs to supply FeynGame
with a corresponding level file. Since constructing such a file by hand can be quite tedious, in
particular if the number of processes to be played should be larger than just a few, FeynGame

3Note that the expression for the amplitude can be quite long and extend beyond the width of the screen. Also,
FeynGame only inserts the Feynman rules and does not attempt any simplifications on the resulting expression.
4The linebreaks were inserted manually.

FeynGame-2.1 — Feynman diagrams made easy Robert Harlander

provides a Level Generator. Given a model file, the maximal and minimal number of particles
in the initial and final state, and the maximal number of loops, it uses the diagram generator
qgraf [2, 3] to generate the requested number of processes and puts them into a level file. We
refrain from a more detailed description of the level generator due to the page limitations of these
proceedings. It will be provided in a forthcoming publication; the interested reader is welcome to
contact us beforehand.

5. Plans for the future

As pointed out above, the features described in this paper are a collection of just some of the
most important changes since the original release of FeynGame, and the interested reader is invited
to try out the new version. In addition, many other features are planned, in preparation, or even
already contained in preliminary versions. Among the latter is the automatic visualization of qgraf
output, which should be a very useful feature for debugging code that calculates Feynman diagrams.
There are also more sophisticated versions of InfFin, where, in addition to the given initial and
final state particles, also specific internal lines have to be incorporated in the final Feynman diagram.
Future releases of FeynGame should also allow for editing groups of lines in a Feynman diagram
simultaneously.

6. Conclusions

We have presented a number of new features which are available in the latest version of
FeynGame and hope that they will be helpful to the physics community in producing high-quality
publication-level Feynman diagrams in an efficient way. We also hope that FeynGame helps to
convey the structure of Feynman diagrams to particle physics novices.

Any feedback or requests for help or new features are welcome and can be sent directly to the
authors, or submitted via the gitlab repository.

Acknowledgments. We would like to thank all users of FeynGame for their feedback. Special
thanks go to Jakob Linder for pointing out a number of issues, Lars Biindgen and Erik de la Haye
for contributing to the FeynGame development, and Maximilian Lipp for designing FeynGame’s
structure in such a flexible way.

References

[1] R. V. Harlander, S. Y. Klein, and M. Lipp, FeynGame, Comput. Phys. Commun. 256 (2020)
107465, arXiv:2003.00896 [physics.ed-ph].

[2] P. Nogueira, Automatic Feynman graph generation, J. Comput. Phys. 105 (1993) 279-289.

[3] P. Nogueira, Abusing qgraf, Nucl. Instrum. Meth. A 559 (2006) 220-223.

https://gitlab.com/feyngame/FeynGame
http://dx.doi.org/10.1016/j.cpc.2020.107465
http://dx.doi.org/10.1016/j.cpc.2020.107465
http://arxiv.org/abs/2003.00896
http://dx.doi.org/10.1006/jcph.1993.1074
http://dx.doi.org/10.1016/j.nima.2005.11.151

	Introduction
	General functionalities
	The main frame
	The edit frame

	New drawing features
	New educational features
	Amplitude
	Level Generator

	Plans for the future
	Conclusions

