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The Quantum Angle Generator (QAG) is a cutting-edge quantum machine learning model de-
signed to generate precise images on current Noise Intermediate Scale Quantum devices. It utilizes
variational quantum circuits and incorporates the MERA-upsampling architecture, achieving ex-
ceptional accuracy. The study demonstrates the QAG model’s ability to learn hardware noise
behavior, with stable results in the presence of simulated quantum hardware noise up to 1.5%
during inference and 3% during training. However, deploying the noiseless trained model on
real quantum hardware reduces accuracy. Training the model directly on hardware allows it to
learn the underlying noise behavior, maintaining precision comparable to the noisy simulator. The
QAG model’s noise robustness and accuracy make it suitable for analyzing simulated calorimeter
shower images used in high-energy physics simulations at CERN’s Large Hadron Collider.
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1. Introduction

Quantum computing possesses revolutionary potential, offering accelerated computations and
tackling hitherto intractable problems [1]. In the present Noise Intermediate Scale Quantum (NISQ)
era, quantum devices grapple with hardware errors, connectivity constraints, and limited qubits [2].
While practical quantum advantage remains challenging, efforts to optimize algorithms for NISQ-
era constraints are under intensive exploration. Quantum Machine Learning (QML) emerges as a
promising domain, showing resilience to noise and yielding favorable outcomes on NISQ devices
[3].

High Energy Physics (HEP) experiments, like those at CERN’s Large Hadron Collider (LHC),
demand extensive simulated data for precise results [4]. To address this, CERN maintains the
world’s largest computing grid [5]. Machine Learning (ML) models provide faster outcomes
than traditional simulations, without compromising accuracy. Quantum Machine Learning (QML)
shows potential in meeting simulation needs [6, 7]. QML leverages quantum circuits, capitalizing
on properties like superposition and entanglement, potentially surpassing classical neural networks
[8]. Moreover, QML excels in representing complex distributions using fewer parameters, thanks
to its expansive phase space.

Yet, encoding classical data efficiently into qubit states presents a significant hurdle [9]. Several
techniques exist, each with strengths and weaknesses, dependent on the application [9]. Theoret-
ical benchmarks suggest linear scaling between qubits and features for quantum advantage [10].
However, techniques exceeding linear scaling often face limitations, such as amplitude encoding’s
inability to provide absolute energy values for NISQ-based image generation. Current quantum
generative models like Quantum Circuit Born Machine (QCBM) [11], Quantum Variational Au-
toencoders [12], and various quantum Generative Adversarial Networks [13–15] grapple with
scalability and fidelity. In contrast, our Quantum Angle Generator (QAG), initially proposed in
[16], employs angle encoding, maintains linear scaling, and offers high-fidelity outcomes on noisy
quantum devices.

High-energy physics simulations primarily rely on resource-intensive Monte Carlo methods
and the Geant4 toolkit [17]. These methods heavily load the LHC Computing Grid [18]. With
upcoming LHC advancements, a surge in simulation demands might surpass current computing
budgets [19, 20]. Machine learning, augmented with quantum devices, presents a promising
alternative, potentially reducing simulation times and enhancing accuracy [21–23].

Electromagnetic calorimeters, pivotal to HEP detectors, measure particle energies and signif-
icantly contribute to simulation times [18, 24]. Their outputs, termed "shower images," entail 3D
spatial representations. In this study, we focus on one-dimensional, eight-pixel representations of
25×25×25 pixel images from [25], targeting energy ranges between [225, 275] GeV. The processed
dataset, divided into training and test subsets, is detailed in [26].

2. Quantum Angle Generator

The Quantum Angle Generator (QAG) is a Quantum Machine Learning (QML) model that
employs angle encoding for precise image generation. It utilizes variational quantum circuits,
illustrated in figure 1. Qubits start in basis state |0⟩ and pass through a Hadamard (H) gate
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for superposition, followed by a y-rotational (𝑅𝑦) gate introducing randomness for new sample
generation. 𝑅𝑦 gate angles Ω are randomly drawn from [−1, 1] uniform distribution and pixel-wise
scaled by training data’s pixel standard deviations for suitable energy variations. For diverse particle
energies, Ω angles are further multiplied by a random value in [−0.25, 0.25]. The trainable part of
the QAG model comprises unitary transformations via quantum circuits, explored in section 3.

2.1 Model description

To convert quantum states back to classical energies via angle encoding, the model undergoes
multiple executions with quantum state measurements, determined by the number of shots 𝑛𝑏𝑠ℎ𝑜𝑡𝑠.
Measurement frequency of state |0⟩ calculates scalar intersection 𝐼 on the Bloch sphere’s z-axis.

On the Bloch sphere’s x-z-plane, angle 𝜃 is zero at |+⟩ state and clockwise rotation yields
positive values. This is shown in figure 1, depicting state |Ψ⟩, intersection 𝐼, and angle 𝜃 for a
single qubit. Angle 𝜃 transforms into pixel energy 𝐸 as follows:

𝐸 =
(𝐸𝑚𝑎𝑥 − 𝐸𝑚𝑖𝑛) (𝜃 − 𝜃𝑚𝑖𝑛)

𝜃𝑚𝑎𝑥 − 𝜃𝑚𝑖𝑛

. (1)

Figure 1: On the left, we observe the transformation of an illustrative state denoted as Ψ into an angle 𝜃. On
the right, a set of exemplary angles 𝜃 is presented alongside their corresponding energy values.

It’s important to mention that 𝜃 and thus 𝐸 are discrete. The precision and resolution of 𝜃
increase with the number of shots 𝑛𝑏𝑠ℎ𝑜𝑡𝑠. Currently, IBMQ devices allow up to 𝑛𝑏𝑠ℎ𝑜𝑡𝑠 = 100,000
shots. This research indicates 512 shots offer satisfactory resolution.

2.2 Training the model

The QAG model utilizes two objective functions during training. Firstly, the Mean Maximum
Discrepancy (MMD) loss [27, 28], previously employed in quantum models like the QCBM [11],
offers promising average shower distributions. However, its performance in detailed aspects, such
as pixel correlation, was suboptimal. To address this, a correlation (Corr) loss was introduced,
computed using the mean squared error (MSE) between the pixel correlations of the training and
generated data.

For training, we used the Simultaneous Perturbation Stochastic Approximation (SPSA) op-
timizer [29], which streamlines optimization with two steps per epoch. Hyperparameters were
optimized using the Optuna [30] library. All experiments were conducted on Qiskit version 0.26.2.
The models underwent 500 epochs of single-batch training. The MMD loss weight, starting at one,
decays at a rate of −0.001 per epoch from the 100th epoch, while the Corr loss weight ascends from
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zero at the same rate. The batch size, initially generating a single image, was increased to 20 images
post the 100th epoch for better Corr loss computation. Training and inference were done with 512
shots. The SPSA optimizer had an initial learning rate 𝑐0 = 1 which decayed exponentially by
0.006 from the 50th epoch. These configurations exhibited the best outcomes in our tests.

3. Quantum Circuit Architecture
Optimal circuits should balance minimal parameters with accuracy. We evaluated diverse

circuit architectures using key metrics. These architectures employ trainable rotational gates,
particularly focusing on Ry gates for y-axis angle encoding. Some variants included extra 𝑅𝑧 gates
or deeper structures (d2) for potential enhancements. Our mainstay is two-qubit controlled-not
gates (cx gates) from IBM Quantum (IBMQ) devices.

Our study’s metrics encompass trainable parameters 𝑁𝑝, expressibility 𝑋 , and entanglement
capability 𝐸 . We explore if smaller circuits can match the accuracy of larger ones, despite fewer
parameters. Expressibility (1 − 𝑋), measures state representation proficiency; values nearing 1 are
favorable. Entanglement capability 𝐸 quantifies the circuit’s skill in generating entangled states,
with 1 as the ideal.

For the calorimeter investigation, we assess outcomes (figure 2) comparing mean square errors
(MSEs) among circuits. This MSE measures Geant4 and QAG image disparities, averaged over 25
trials per circuit, excluding best and worst outcomes. MERA-up, MERA-up-d2, and MERA-up-
Rz circuits exhibited the lowest MSEs, consistent with their elevated 𝑋 and 𝐸 values. Although
MERA-up-Rz stands as the top performer, the MERA-up circuit delivers comparable results with
only half the parameters. Consequently, we adopt the MERA-up circuit for QAG model training in
our research.

Figure 2: The uncertainty in Mean Squared Error (MSE), where lower values indicate better performance,
across different trained circuit architectures is illustrated concerning 𝑁𝑝 (left), 𝑋 (middle), and 𝐸 (right).
Optimal regions are highlighted by green rectangles.

4. Quantum Noise Study

In the current NISQ era, high hardware error rates constrain the effective application of
algorithms on quantum devices. Similar to classical scenarios, Quantum Machine Learning (QML)
models display a degree of noise resilience amid hardware errors. Here, we examine the noise
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robustness of the QAG model, both in training and inference. Real quantum devices with measured
noise levels are used for comparison with simulations.

4.1 Inference

Initial analysis applies quantum noise to inference in a noise-free model. Three noise scenarios
are tested: simulated noise levels, simulated noise reflecting hardware traits, and real quantum
hardware noise. Simulated noise involves readout and inter-qubit connection errors. Hardware
noise varies for qubits and gates.

Multiple noise levels (0% − 15% error) are tested using MSE for accuracy (blue triangle in
figure 3). Configurations show mean of 20 images with standard deviation. Accuracy remains
stable until about 1.5% noise. Green (readout only) is robust up to 8% noise. Blue (CNOT only)
and orange (combined) fare worse.

The analysis expands to simulating ibmq-montreal device noise, having 27 qubits with
average readout and gate noise (blue triangle in figure 3). It aligns with simulations, suggesting
noise-resilient training for accurate noisy hardware inference.

Real ibmq-montreal inference (red triangle in figure 3) performs worse than simulations.
This might be due to unaccounted two-qubit entanglement gates in quantum circuit decomposition,
absent in hardware noise simulations.

Figure 3: Exploring Noise levels during inference: Noise levels are plotted on the x-axis, while Mean
Squared Error (MSE), a measure of accuracy (lower values are superior), is depicted on the y-axis. Inference
is conducted across diverse noise configurations using real quantum hardware.

5. Conclusion

This study establishes the competence of the recently developed QAG model in producing
images with remarkable precision, as corroborated by diverse validation metrics. Beyond accurately
capturing average values, the model adeptly reproduces intricate pixel-wise correlations using the
optimal MERA-up quantum architecture, indicating its capability to discern intrinsic correlation
patterns from training data.

The investigation underscores the notable influence of quantum hardware noise on quantum
machine learning model accuracy. Notably, training models with noise yields improved perfor-
mance (stable until 3% noise), as the QAG model adapts to noise patterns, resulting in faster
convergence—contrasting the outcome of noise application solely during inference (stable until
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1.5% noise). This observation is consistent with ibm-cairo hardware training outcomes. More-
over, the study underscores the QAG model’s robustness, showcasing its ability to yield accurate
results despite significant hardware calibration shifts of up to 8% noise, as demonstrated in the
ibmq-montreal training.

In essence, the novel QAG model’s resilience when trained with realistic quantum hardware
noise highlights its potential to establish sturdy models delivering accurate outcomes. This outcome
holds crucial implications for the advancing landscape of real-world quantum machine learning
applications.
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