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1. Introduction

The most innovative concept in thermodynamics is entropy. This concept was created by
Clausius, and its name was also by him combining the word ’energy’ and a Greek word ’𝜏𝜌o𝜋𝜂’ to
mean that it plays a role in describing energy or heat transport. (See [1].) Indeed, entropy enables
us to describe the laws of thermodynamics most concisely, which are basic tools to investigate a
macroscopic system in thermodynamic equilibrium.

Once a macroscopic system reaches thermodynamic equilibrium, thermodynamic observable
quantities become stationary and uniform in the whole region of the system. This property for
thermodynamic observables to be globally constant in space-time is in fact so strong that any
macroscopic system does not go to thermodynamic equilibrium even after a long time passes. Even
for such a system that does not reach thermodynamic equilibrium, thermodynamics is still useful
if the system reaches local thermodynamic equilibrium, in which thermodynamic observables are
constant in any subregion with the scale of the mean free path of constituent particles. Such local
thermodynamic equilibrium systems can be seen in gravitational systems such as the homogeneous
isotropic universe and a stable astronomical body realized on some curved space-time. Then it is
natural to ask how the entropy is defined for such a local thermodynamic equilibrium system in
curved space-time and how the laws of thermodynamics are modified therein.

These questions are not easy to answer at all taking into account a long-standing problem
on how to define the energy of a system in curved space-time. The problem is summarized as a
trilemma that it is impossible to define a quantity in curved space-time respecting the conservation
law, the gauge invariance of observables, and the consistent flat limit concurrently. The problem
was already recognized by Einstein when he submitted a paper on general relativity [2]. In order to
maintain the conservation law of energy confirmed in the flat space-time, he introduced a quantity
called pseudo-tensor to define energy in curved space-time. (See also [3].) The quantity was
expected to describe the energy-momentum tensor of gravity. However, as suggested by the name,
it is not a tensor. Therefore a quantity expected as energy defined by using a pseudo-tensor is not
physical in gauge principle. In order to handle such a gauge-dependent property of the expected
gravitational energy-momentum tensor, an idea is to evaluate it not in the bulk region but in the
asymptotic boundary region. Such a quantity defined as a surface integral at constant time slice
is called a quasi-local one. What is preferable in quasi-local energy is to achieve partial general
coordinate invariance and to make it possible to evaluate masses of black holes without involving
singularities, though it is accompanied by extra divergence even in the flat space-time, which needs
to be regularized suitably by comparing a reference frame or adding quasi-local counter terms
[4–10]. On the other hand, Komar pointed out that it is possible to construct a quantity combined
with a vector field respecting both the conservation law and the gauge principle, which is called a
Komar integral [11]. A Komar integral defined by using a suitably chosen time-like vector is called
the Komar mass, which is expected as energy in general curved space-time. Although the Komar
mass respects the conservation law and the gauge invariance, it does not reduce to the original
definition of energy in the flat limit.

As briefly overviewed above, how to define energy on curved space-time has been discussed
for a long time and it has not reached one consensual definition yet. It goes without saying about
the difficulty to give that of entropy on curved space-time.
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2. Proposals

The author majored in theoretical particle physics in his Ph.D. course and has continued to
investigate non-perturbative aspects of high energy physics and quantum field theory mainly to the
end of resolving another long-standing problem of quantum gravity. During a project to realize
a black hole including the effect of quantum gravity in a holographic approach [12], the author
recognized that quasi-local energy cannot precisely evaluate the energy of the gravitational system
expected to realize a quantum black hole, and, trying to resolve this problem, he finally reached an
expression of a volume integral for the purpose [13], which turned out to be essentially the same as
written in an old textbook of general relativity by Fock [14]

𝐸 =

∫
Σ𝑡

𝑑3𝑥
√︁
|𝑔 |𝑇0

𝜇𝑛
𝜇, (1)

where Σ𝑡 is a hypersurface of constant time slice and 𝑛𝜇 is the time evolution vector field. This
definition of energy achieves manifest general coordinate invariance and the consistent reduction in
the flat limit, while it is not conserved unless the time evolution vector field is a Killing one. There
are two important consequences of adopting the definition (1) [13]. One is the agreement of the
masses of well-known black holes computed by quasi-local energy. This was confirmed by carefully
computing the contribution of the essential singularity expressed as a form of the delta function
like the charge distribution of an electron in electromagnetism. The other is the violation of the
equivalence principle between the inertial mass and the gravitational one for an extended object.
Their deviation was explicitly computed for a spherically symmetric system in local equilibrium
and described by gravitational self-interaction. The existence of such deviation is indeed consistent
with that of tidal force as the non-removable one by changing an observer for any extended object.

The definition of energy (1) can be extended to that of a general charge by replacing the time
evolution vector field with a general one 𝑣𝜇 as𝑄 [𝑣] =

∫
Σ𝑡
𝑑3𝑥

√︁
|𝑔 |𝑇0

𝜇𝑣
𝜇 . Reaching this expression,

one may ask oneself whether there is a case where this charge is conserved unless the vector field is
a Killing one. The answer is yes if the energy-momentum tensor is covariantly conserved and there
exists a vector field 𝜁 𝜇 to satisfy a differential equation such that

𝑇 𝜇
𝜈∇𝜇𝜁

𝜈 = 0. (2)

If the vector field 𝜁 𝜇 is not a Killing one, then the conserved charge 𝑄 [𝜁] is not a Noether one but
a new one that is not associated with any symmetry. One might wonder about its existence and its
physical meaning. In fact, such a charge was found in a spherically symmetric gravitational system
[15], and the vector field corresponding to 𝜁 𝜇 is referred to as the Kodama vector. The Kodama
vector can be confirmed to satisfy the differential equation (2). It was shown in [16, 17] that such a
new conserved charge indeed exists explicitly in two gravitational systems different from the one in
[15]. On the physical meaning, the author and collaborators proposed that the new conserved charge
describes the entropy of the system [16]. An intuitive argument for this proposal is that entropy for
a system governed by a fundamental theory such as a gravitational one must be conserved in general
since dynamics in such a theory is reversible. Thus it is natural to expect that the new conserved
charge plays the role. As concrete evidence, it was shown that both the local Euler’s relation and the
first law of thermodynamics hold non-perturbatively with respect to the Newton constant under the
proposed interpretation in the two gravitational systems. These results are beriefly reviewed below.
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3. Applications to local thermodynamic equilibrium systems

3.1 Homogeneous isotropic universe

The first application is to the model of our universe [16], which is approximately homogeneous,
isotropic and in local thermodynamic equilibrium at each time slice on a very large scale beyond
a cluster of galaxies. In this approximation, the metric is described by the Friedmann-Lemaître-
Robertson-Walker one, 𝑔𝜇𝜈𝑑𝑥𝜇𝑑𝑥𝜈 = −𝑑𝑡2 + 𝑎2( 𝑑𝑟2

1−𝑘𝑟2 + 𝑟2(𝑑𝜃2 + sin 𝜃2𝑑𝜙2)), where 𝑎 is a function
of time called the scale factor, 𝑘 = −1, 0, 1 corresponding to open, flat, closed universe, respectively,
and the energy-momentum tensor takes the form of a perfect fluid,𝑇 𝜇

𝜈 = (𝑝+𝜌)𝑢𝜇𝑢𝜈+𝑝𝛿𝜇𝜈 , where𝑢𝜇

is the fluid velocity and 𝜌, 𝑝 are the energy density, the pressure depending only on time, respectively.
In the comoving frame, the Einstein equation reduces to −8𝜋𝐺𝑁 𝜌 = −3(𝐻2 + 𝑘

𝑎2 ) + Λ, 8𝜋𝐺𝑁 𝑝 =

(2 𝑑𝐻
𝑑𝑡

+ 3𝐻2 + 𝑘

𝑎2 ) +Λ, where 𝐺𝑁 is the Newton constant, 𝐻 = 1
𝑎
𝑑𝑎
𝑑𝑡

is the time-dependent Hubble
parameter, and Λ is the cosmological constant.

Now solve the differential equation (2) to find a vector field 𝜁 𝜇 for a new conserved charge
proposed as entropy. Although a general prescription thereof is not known yet, such a vector field is
desired to satisfy the following conditions: one is to be generated from fluid velocity of the system,
and the other is to respect the general covariance. These two conditions require the vector field to
be proportional to the fluid velocity such that 𝜁 𝜇 = −𝛽𝑢𝜇, where 𝛽 is an unknown scalar function
of time. This ansatz reduces (2) to 𝜌𝑢𝜇∇𝜇𝛽 = 𝑝𝐾𝛽, where 𝐾 = ∇𝜇𝑢

𝜇 is the so-called expansion.
In the comoving frame, it can be solved as 𝛽(𝑡1) = 𝛽0 exp(−

∫ 𝑡1
𝑡0
𝑑𝑡𝑝𝐾/𝜌), where 𝛽0 = 𝛽(𝑡0)

corresponds to an integration constant, and 𝐾 = 3𝐻. Then the proposed entropy density 𝑠 is
computed as 𝑠 =

√︁
|𝑔 |𝑇0

𝜇𝜁
𝜇 =

√
𝑔̃𝑎3𝜌𝛽, where 𝑔̃ = 𝑟4

1−𝑘𝑟2 sin2 𝜃. This can be rewritten as 𝑠 = 𝛽𝑢,
where 𝑣 =

√
𝑔̃𝑎3 is the integrand of the volume at constant time slice, 𝑢 = 𝜌𝑣 is the internal energy

density. This is regarded as the local Euler’s relation 𝑇𝑠 = 𝑢 by interpreting 𝛽 as the inverse local
temperature, 𝛽 = 1/𝑇 . This interpretation is also consistent with the first law of thermodynamics,
𝑇 𝑑𝑠

𝑑𝑡
= 𝑑𝑢

𝑑𝑡
+ 𝑝 𝑑𝑣

𝑑𝑡
, which can be derived from a straightforward calculation. Employing the second

Friedmann equation derived from the Einstein equation, 𝑑𝜌

𝑑𝑡
+ 3𝐻 (𝜌 + 𝑝) = 0, one can show that the

entropy density is conserved, as asserted.1
Therefore, it concludes that the energy is not conserved but the entropy is conserved as long as

the universe is well approximated as homogeneous and isotropic.2 This conclusion of the adiabatic
evolution of the universe is not trivial at all if one takes into account the words of Clausius that ’The
energy of the universe is constant, The entropy of the universe tends to a maximum,’ [1] and the
idea of Einstein to use pseudo-tensor to define energy for the purpose of respecting the conservation
law [2]. Another important consequence of local thermodynamics is the fate of the Big Bang of
the universe regardless of any value of the Newton constant and any equation of state. This can
be easily seen from the first law of thermodynamics, 𝑠 𝑑𝑇

𝑑𝑡
= −𝑝 𝑑𝑣

𝑑𝑡
, which reads that if the volume

decreases as time goes back, the temperature correspondingly increases since the entropy density
and the pressure are both positive.

1The entropy density here is defined differently from the one in [18]. The latter is defined by the total entropy divided
by the physical volume of the universe, and thus is not conserved. The total entropy is conserved for both cases.

2Indeed, the total energy and the total entropy are computed as 𝑈 =
∫
𝑑3𝑥𝑢 = 𝑉𝜌, 𝑆 =

∫
𝑑3𝑥𝑠 = 𝑈/𝑇 , where

𝑉 =
∫
𝑑3𝑥𝑣 = 𝑉̃𝑎3 is the volume of the space of the universe, or the physical volume, and 𝑉̃ =

∫
𝑑3𝑥

√
𝑔̃ is the one

labeled by the comoving coordinate system, or the comoving volume. For the closed universe of 𝑘 = 1, 𝑉̃ = 2𝜋2.
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3.2 Spherically symmetric hydrostatic equilibrium

The other application is to a hydrostatic equilibrium system with spherical symmetry [17].
As previously, the energy-momentum tensor in such a system is described by a perfect fluid, but
the energy density and the pressure are now functions only of the radial coordinate 𝑟 . The metric
in such a system is generally given by 𝑔𝜇𝜈d𝑥𝜇d𝑥𝜈 = − 𝑓 d𝑡2 + ℎd𝑟2 + 𝑟2(𝑑𝜃2 + sin 𝜃2𝑑𝜙2), where
𝑓 , ℎ are functions only of 𝑟 . The balance between the attractive force of gravity and the repulsive
one of matter is described by the Einstein equation, which is reduced in the comoving frame to
𝑑𝑝

𝑑𝑟
= − (𝑝+𝜌)

2
𝑑 log 𝑓

𝑑𝑟
,
𝑑 log ℎ

𝑑𝑟
= 𝑟ℎ(8𝜋𝐺𝑁 𝜌+Λ)− (ℎ−1)

𝑟
,
𝑑 log 𝑓

𝑑𝑟
= 𝑟ℎ(8𝜋𝐺𝑁 𝑝−Λ)+ (ℎ−1)

𝑟
. Substituting

the 3rd equation into the 1st one, one obtains the Tolman-Oppenheimer-Volkov equation [19].
Now solve the differential equation (2) and find a vector field 𝜁 𝜇 for a conserved entropy. To the

end, as previously, the vector field is set to be proportional to the fluid velocity 𝜁 𝜇 = −𝜁𝑢𝜇, where
𝜁 is an unknown scalar function of 𝑟 . This ansatz reduces (2) to 𝑑𝜁

𝑑𝑟
= − 𝑝

𝜌

𝜁

𝜌+𝑝
𝑑𝜌

𝑑𝑟
in the comoving

frame, which can be solved as 𝜁 = 𝛽0𝑢
𝑡 𝑓 (1 + 𝑝

𝜌
) with 𝛽0 an integration constant. Substituting this

solution into the proposed definition of entropy density, one obtains 𝑠 = 𝛽0 𝑓
1/2(𝑢 + 𝑝𝑣), where

𝑣 = 𝑟2√ℎ sin 𝜃 is the integrand of the volume at constant time slice, 𝑢 = 𝜌𝑣 is the internal energy
density. Therefore, if 𝛽0 𝑓

1/2 =: 1/𝑇 is interpreted as the inverse local temperature, then the local
Euler’s relation is obtained as 𝑇𝑠 = 𝑢 + 𝑝𝑣. Importantly, this interpretation of the local temperature
exactly matches the one derived by Tolman in a different way [20]. (See also [21, 22].) This local
temperature leads to a differential equation 𝑑𝑇

𝑑𝑟
= 𝑇

𝑝+𝜌
𝑑𝑝

𝑑𝑟
and also to the first law of thermodynamics,

𝑇 𝑑𝑠
𝑑𝑟

= 𝑑𝑢
𝑑𝑟

+ 𝑝 𝑑𝑣
𝑑𝑟

. Note that the associated entropy current is 𝑠𝜇 = 𝛽0𝑢
𝑡 𝑓 3/2(𝑢 + 𝑝𝑣)𝑢𝜇 and its

conservation 𝜕𝜇𝑠𝜇 = 0 can be shown in a radially moving frame.
It concludes that a spherically symmetric hydrostatic equilibrium system such as a stable

spherical star obeys the local thermodynamic relations non-perturbatively in the Newton constant.
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