
P
o
S
(
E
P
S
-
H
E
P
2
0
2
3
)
5
0
0

A loophole in the proofs of asymptotic freedom and
quantum triviality
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In 1973, Coleman and Gross proved that in four dimensions, only non-abelian gauge theories
can have asymptotic freedom. More recently, Aizenman and Duminil-Copin proved that four
dimensional scalar field theories are quantum trivial in the continuum. Both of these proofs have
a loophole, and it is the same loophole in both proofs: The proofs assume that the scalar self-
coupling in the UV is positive definite. While this is a perfectly reasonable and classically very
intuitive assumption, it is an assumption nevertheless. In this work, I show that the assumption of
coupling positivity is violated in a concrete quantum field theory, the O(N) model, in the large N
limit. Surprisingly, despite the classically nonsensical unbounded potential, the negative coupling
has no pathological consequence for propagators, the free energy or cross sections. This suggests
that interacting scalar field theories with asymptotic freedom in four dimensions are possible,
despite long-held opinions to the contrary.
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Classical physics is intuitive. In classical physics, a marble placed inside a bowl will always
stay within the bowl, and never escape off to infinity. Similarly, if the bowl is turned upside-down,
the marble place on its upper surface have the tendency to escape far away from the bowl.

In quantum physics, things are not so intuitive. Phenomena such as quantum tunneling or
the two-slit experiment have no simple classical analogue, and it is only by learning to trust the
mathematics that physicists were able to gain understanding of quantum phenomena. The proofs of
two important concepts in theoretical quantum field theory, namely the no-go proofs for asymptotic
freedom and non-trivial interaction in four dimensional scalars in the continuum [1, 2], are based on
the assumption of a classically stable potential. However, already in 1973, Symanzik [3] suggested
that classically unstable potentials may lead to well-defined quantum field theories.

Historically, concrete constructive evidence that classically unstable potentials can lead to
positive definite Hamiltonian eigenspectra and perfectly well-defined unitary quantum mechanical
time evolution was given by Bender and Böttcher [4]. They studied non-Hermitian Hamiltonians
of the form H = p2 − (ix)α with arbitrary α > 2 and showed how to use analytic continuation to
calculate real and positive eigenenergies for the quantum Hamiltonian H despite the fact that the
classical problem does not admit real and positive energies.

In the present work, I am going to formulate this finding as follows:
In quantum mechanics, classically unstable potentials may be understood as analytic

continuation of classically stable potentials into the unstable region, unless singular structures
in the complex plane prohibit this analytic continuation.

Based on this finding, I will push well-known results for field theories outside their classical
boundaries. As criterion to decide if a quantum field theory is well-defined I am proposing the
following definition:

A given quantum field theory is well-behaved in the continuum if all physical observables
are well behaved. By contrast, classical intuition based on quantities that are not observables,
such as in particular the value of the non-renormalization group invariant running coupling
λR ( µ̄), should not be used.

In a nutshell, if observables in a quantum field theory candidate come out well-behaved, this
quantum field theory should be taken seriously even if it does not make sense classically. This
alternative way of defining quantum field theory has surprising consequences.

1. Explicit Calculations

A toy model in 0d

As a particular example, let me consider the simplest possible case of 0 dimensional field
theory, with partition function possessing the integral representation

Z (λ) =
∫ ∞

−∞

dx e−λx
4
, Re(λ) > 0 . (1)

Classically, the potential V (x) = λx4 is bounded only for Re(λ) > 0, which is what sets
the limit on the above integral representation. We can evaluate this integral for Re(λ) > 0, and
find Z (λ) = 2Γ

(
5
4

)
× λ−

1
4 . Since the above result is valid in an open region for λ, we can

analytically continue this result to values of λ outside the domain of validity of the original integral
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representation (1). In our case, this is easy, because we can use the known analytic continuation
of the root function. In particular, one finds Z (λ = −g) = (−1)−

1
4 2Γ

(
5
4

)
× g−

1
4 , g ∈ R+. The

analytically continued result for Z (λ) to negative (real) λ is not unique because of the four-sheeted
nature of the quarter root. To obtain a unique result, additional information, such as a symmetry, is
needed. For instance, if the additional information is that the partition function should be real and
positive, the only possible result is

Z (λ = −g) = 2Γ
(

5
4

)
g−

1
4

e
iπ
4 + e−

iπ
4

2
=
√

2Γ
(

5
4

)
g−

1
4 , g ∈ R+ . (2)

Far from being nonsensical, (2) is a perfectly well-behaved partition function for λ < 0, despite
the classically unbounded potential.

The situation is completely analogous to well-studied functions in pure mathematics, such as
the Riemann ζ function or the Γ function, with integral representations defined by

ζ (s) =
1
Γ(s)

∫ ∞

0
dx

xs−1

ex − 1
, Γ(s) =

∫ ∞

0
dx xs−1e−s , (3)

for Re(s) > 1 and Re(s) > 0, respectively. The analytic continuation to negative real-valued
arguments of these functions has been known for more than a century, in particular leading to
ζ (−1) = − 1

12 and Γ
(
− 1

2

)
= −2

√
π. There is no controversy about evaluating ζ, Γ at negative real

argument, so by analogy, neither should there be for analytic continuations such as (2).

The O(N) model in 4d

The above toy model demonstrates the possibility of well-behaved results for the case of
classically unbounded potentials. However, it is a toy model and not a bona-fide quantum field
theory in four dimensions. Interacting four-dimensional field theories are in general extremely hard
to solve, except if they possess a small parameter that allows non-perturbative expansions, such as
many field components [5, 6].

To be specific, let us consider the O(N) model defined by the Euclidean partition function

Z =
∫
D ~φe

−
∫
d4x

[
1
2
~φ(−∂µ∂µ) ~φ+ λ

N

(
~φ2

)2]

, where ~φ = (φ1, φ2, . . . , φN ) is an N-component scalar
field. Introducing an exact Hubbard-Stratonovic transformation with an auxiliary field ζ , the large
N limit of the O(N) model in any number of dimensions is given by (see Refs. [6–8] for the detailed
steps in between for various dimensions): Z =

∫ ∞
−∞

dζ0e−N×vol×Veff (
√

2iζ0) with the effective potential
in the large N limit Veff (m) = 1

2

∫
d4k

(2π)4 ln
(
k2 + m2

)
− m4

16λ . In this form, the effective potential
still suffers from UV-divergencies. The standard procedure to regulate divergences in high energy
theory is dimensional regularization, though some researchers still prefer cut-off regularization
despite it breaking Lorentz invariance of the theory. In either regularization scheme, the above
integral is completely standard, and one finds in dimensional regularization (see Ref. [8] for cut-off

regularziation) Veff (m) = − m4

64π2

(
1
ε +

4π2

λ + ln µ̄2e
3
2

m2

)
, where µ̄ is the MS renormalization scale.

The effective potential still needs to be renormalized, which in the present case is achieved by
the non-perturbative renormalization condition 1

ε +
4π2

λ =
4π2

λR (µ̄) , with the exact large N running

coupling λR ( µ̄) having β function β ≡ ∂λR (µ̄)
∂ ln µ̄2 =

λ2
R (µ̄)
4π2 . The large N exact β-function is uniformly
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positive for all real λR. Integrating the β function, one obtains for the explicit large N exact running
coupling λR ( µ̄) = 4π2

ln
Λ2

MS
µ̄2

, where ΛMS is the Λ parameter of the O(N) model.

For small values of µ̄ � ΛMS, the running coupling is positive, allowing a simple and intuitive
classical interpretation of the theory. This is the regime in which scalar field theory is usually
employed, as a cut-off (effective) theory for scales µ̄ � ΛMS.

Increasing µ̄, one finds that the running coupling increases and finally diverges at µ̄ = ΛMS,
which is often referred to as the Landau pole of the theory. Again, classical intuition fails near
the Landau pole, even though several example in the literature exist where observables remain
well-defined and finite despite the divergent coupling, e.g. [7, 9–11]. Common lore also has it that
near the Landau pole, all higher dimension operators turn on, rendering the theory uncalculable.
This is a myth, as shown in Ref. [12].

Beyond the Landau pole, λR ( µ̄) remains well-defined, increasing, but negative for µ̄ > ΛMS,
straining classical interpretation. For asymptotically high energies µ̄→ ∞, λR ( µ̄) approaches zero
(albeit from below), which demonstrates that the O(N)model is an example of an asymptotically free
theory. However, from the point of view of analytic continuation, nothing particularly remarkable
is happening. It is key, however, to note that the non-positivity of λR ( µ̄) in the UV is exploiting
precisely the loophole in the proofs of asymptotic freedom and quantum triviality [1, 2]. This is
not an engineered setup, it follows naturally from solving the O(N) model non-perturbatively in the
large N limit, and has been known for decades [13, 14].

According to the criterion outlined in the introduction, it is necessary to calculate observables
in order to decide if the theory is well-behaved. Fortunately, one can easily calculate observables
in the large N limit of the O(N) model. The observable that is most easily accessible is the value of
the partition function itself, which in the large N limit is given exactly from the saddle point of the
Z . One finds for the free energy density [6] F = − ln Z

vol = NVeff (m), with m given by dVeff (m)
dm = 0.

Inserting the explicit form of the large N exact running coupling (4) into the renormal-

ized expression for Veff one finds Veff (m) = − m4

64π2 ln
Λ2

MS
e

3
2

m2 . One finds two saddles for the
partition function: m = 0, and m =

√
eΛMS. The free energy density for these saddles is

Fm=0 = 0 , Fm=
√
eΛMS

= −
Ne2Λ4

MS
128π2 . Since the free energy is an observable, it cannot depend

on the fictitious renormalization scale µ̄, and it is gratifying to see that this is indeed the case. Both
results for the free energy are well-behaved, showing no sign of any pathologies that a simplistic
classical interpretation of the potential would have perhaps suggested. The value of the free energy
is important, however. Basic thermodynamics tells us that in the presence of two phases, the
phase with the lower free energy is thermodynamically preferred. This means that the saddle point
solution m = 0 is thermodynamically unstable with respect to decay to the thermodynamically
preferred saddle m =

√
eΛMS, something which confused early researchers [15] but was clarified

soon afterwards [13, 14]. Besides the free energy, another observable is the pole mass of the
vector ~φ, which is given by the value of the saddle (see e.g. Ref. [6] for details on the calculation).
For the thermodynamically preferred phase, the result for the pole mass m =

√
eΛMS is again

renormalization-scale independent, well-behaved and free from any pathologies.
One might worry that pathologies only show up when considering scattering, which requires

consistently including 1
N corrections into the calculation. Fortunately, this is not hard to do, and
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one finds for the cross section for example in the s-channel

σ(E)
(4π)3 =


N2E2

��������
1 − 2

√
1 −

4m2

E2 + i0+
atanh

1√
1 − 4m2

E2+i0+

��������

2

−1

(4)

to NLO in large N. Again, the cross section is renormalization-scale independent, well-behaved
and free from any pathologies. The only curious feature of the cross section is the presence of a
stable scalar bound state with a mass of m2 ' 1.84m, that was again already found a long time ago
[13]. Consistent incorporation of NNLO corrections in the large N expansion are expected to imbue
this scalar bound state with a finite width, in complete analogy to how muonium obtains a finite
width in perturbative QED calculations [16]. The result for the scalar mass is renormalization-scale
independent, well-behaved and free of pathologies.

It should be stressed that calculating the cross-section in perturbation theory one encounters
divergencies from the Landau pole at every single order in perturbation theory, cf. the discussion in
lecture 3 in [17]. However, expanding out (5) in perturbation theory one finds that it corresponds to
the sum over an infinite number of perturbative “bubble diagrams”, rendering the end-result finite
and insensitive to the Landau pole. Non-perturbative evaluation for the O(N) model at finite N can
be done by discretizing negative coupling field theory on a space-time lattice. The corresponding
lattice action appears to be non-polynomial [8, 18], yet amenable to numerical integration e.g.
for N=1[8, 19]. Further numerical work for negative coupling scalar field theory on the lattice is
required to study if the large N results carry over to N=1,2.

2. Summary and Conclusions

In this work, I propose to use observables instead of classical intuition in order to decide
whether or not a quantum field theory is sensible in the continuum. I show that — based on this
criterion— the O(N) model in four dimensions in the large N limit is a sensible interacting quantum
field theory exhibiting asymptotic freedom, despite (or perhaps because) it possesses a Landau pole
and non-positive running coupling in the UV. This property (non-positive coupling) is precisely
the loophole in no-go proofs for four-dimensional scalars in Refs. [1, 2], rendering both proofs
ineffective for the four-dimensional O(N) model in the large N limit. Further work needs to be done
in order to decide if theories with a finite (small) number of scalars, such as the N=4 Higgs field in
the Standard Model, are also non-trivial and asymptotically free quantum field theories.

This work was supported by the Department of Energy, DOE award No DE-SC0017905.
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