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The flavour tagging, i.e. the identification of jets originating from heavy flavour quarks, is
an essential task for the Standard Model and Beyond the Standard Model research at colliders.
Machine Learning-based algorithms have been playing a key role since long time in this task. Graph
Neural Networks (GNNs) are a type of machine learning tool where input datasets are represented
and processed as graphs. In the context of flavour tagging, GNNs can be particularly useful as they
can represent and exploit the internal structure of jets for the identification of the original parton by
utilizing the tracks associated with the jets. In this article, we present AUTOGRAPH (Automatic
Unified Training and Optimization for Graph Recognition and Analysis with Pipeline Handling),
a fully automated and totally customizable pipeline based on GNNs dedicated to flavour tagging.
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1. Introduction

Since the middle of Run 2 [1], due to the increase in the expected integrated luminosity delivered
by the Large Hadron Collider (LHC) [2], a growing emphasis has been put on algorithmic im-
provement of Machine Learning techniques for online tagging of heavy flavours [3]. Nowadays, the
CMS [4] and ATLAS [5] collaborations, LHC general-purpose experiments, utilize Graph Neural
Networks (GNNs) for flavour tagging. Moreover, GNN algorithms are applied to offline analysis
for background-signal classification tasks [6]. For these reasons, a pipeline that allows easy access
to this state-of-the-art technology could be advantageous for many analyses.

2. The AUTOGRAPH pipeline

The pipeline architecture is divided into two main components - the user interface and the automated
steps, illustrated in Figure 1. The interface comprises a single configuration file that enables the user
to access and manage the jet-graph structure, network architecture, and training hyperparameters.
The automated steps are the underlying structure of the pipeline, consisting of sub-programs written
in Python language managed by the user interface. The automated steps are executed by launching
a single Python script.

Figure 1: Pictorial pipeline representation. The user interface section represents the configuration file
wherein the user can choose the setting for the automated steps. The latters are divided in three main
processes illustrated schematically.

2.1 Dataset handling

To feed the GNN, the array-structured data collected in High Energy Physics collisions are recast
to graph description. The graph is a jet representation where the tracks associated with the jet
constitute the fully connected neurons. Through the configuration file, the user can customize the
graph architecture, selecting the number of tracks per jet, the features associated with each track,
and the global-jet features. Finally, the resulting graph list is converted into Pytorch Geometric
DataLoader format [7]. To train supervised machine-learning networks, it is necessary to access the
truth information level included exclusively in the Monte Carlo simulation (MC). For this reason,
the pipeline is conceived to work on a simulated dataset.
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2.2 Network architecture

Figure 2: Representation of the network architecture. The input graph, labeled by the MC truth-level
information, is classified from the Fully Connected Network in three classes corresponding to l-, c- or b-jet.

The default structure of the network, shown in Figure 2, consists of a series of Graph Layers
followed by a pooling function. A three-classes Fully Connected Network (FCN) executes the final
classification. The FCN outputs 𝑝𝑏, 𝑝𝑐 and 𝑝𝑙 are the network output probabilities representing
the probability that the input jet is generated, respectively, from a bottom quark, a charm quark, or
a light quark. The user is given a choice between two Message-passing-based layers: the Graph
Convolutional Layers [8] and the Graph Convolutional Attention Layers [9]. The configuration file
allows the selection of the graph layer number, the hidden nodes per layer, the pooling function and
the FCN architecture. In conclusion, the network architecture is fully customizable and can include
the attention mechanism [10].

2.3 Training and performance evaluation

After the dataset preparation and the network architecture setting, the user can train the selected
model with a fully customizable set of hyperparameters. Among the latter are the number of epochs
for which the model is trained, the batch size, the learning rate and the optimization algorithm.

3. Application of the pipeline on simulated datasets

Two simulated datasets were used to evaluate the performance of the pipeline. The first dataset was

Figure 3: Jet transverse momentum distribution for the 𝑡𝑡 at next-to-leading order dataset (left) and the 𝑍 ′𝐻

at leading order dataset with 𝑚𝑍 ′ = 2 TeV (right). The distributions are divided for jet truth flavours.

a next-to-leading order 𝑡𝑡 simulation, while the second dataset was a leading order 𝑍 ′𝐻 simulation.
In the second dataset, 𝐻 refers to the Higgs boson and 𝑍 ′ is a dark matter mediator candidate
that is restricted to decay to hadrons. Three Monte Carlo simulation frameworks interfaced with
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each other have been exploited to obtain the datasets. Firstly, MadGraph_aMC@NLO [11] was
used to generate parton-level hard processes, followed by Pythia 8.3 [12] which provides the
parton showering and hadronization. Finally, Delphes 3.5.0 [13] covers the detector response
simulation. The 𝑍 ′𝐻 dataset with 𝑚𝑍 ′ = 2 TeV shows an extended transverse momentum range
of the jets, as can be seen in Figure 3. The tracks have been associated to the jet with the
Δ𝑅 =

√︃
(𝜂 𝑗𝑒𝑡 − 𝜂𝑡𝑟 𝑘)2 + (𝜙 𝑗𝑒𝑡 − 𝜙𝑡𝑟 𝑘)2 criteria: for jet 𝑝𝑇 ≤ 150 GeV is required Δ𝑅 ≤ 0.45,

while for jet 𝑝𝑇 > 150 GeV Δ𝑅 ≤ 0.26 [14]. Furthermore, the pipeline can provide the distribution

Figure 4: Results from the grid search. Starting from the left: (a) Heat map with best epoch loss value for
the grid search on 𝑡𝑡 at the next-to-leading order dataset, (b) Heat map with best epoch loss value for the grid
search on 𝑍 ′𝐻 at the leading order dataset, (c) Discriminant distribution for the best architecture with the
𝑍 ′𝐻 at leading order dataset divided per flavour.

of the discriminant 𝐷𝑏, defined as 𝐷𝑏 = 𝑙𝑜𝑔

(
𝑝𝑏

𝑝𝑐 𝑓𝑐+(1− 𝑓𝑐 ) 𝑝𝑙

)
, where 𝑝𝑏, 𝑝𝑐 and 𝑝𝑙 are the network

output probabilities, introduced in the subsection 2.2, and 𝑓𝑐 is the fraction of c-jets in the dataset.
This variable represents the network’s capability to distinguish between jet flavours. The better
the separation of flavour contributions, the better the network’s performance. The discriminant
distribution for the architecture of 5 graph layers and 512 nodes is shown in Figure 4 (c).

4. Conclusion

The AUTOGRAPH pipeline is designed to provide straightforward access to state-of-the-art flavour
tagging algorithms based on GNNs. This paper presents the pipeline along with an application case
on two simulated datasets with different kinematic characteristics.

4



P
o
S
(
E
P
S
-
H
E
P
2
0
2
3
)
4
9
3

A pipeline to test Graph Neural Network algorithms for flavour tagging Greta Brianti

References

[1] J. T. Boyd. LHC Run-2 and Future Prospects. 2020. arXiv: 2001.04370 [hep-ex].

[2] O. Brüning, H. Burkhardt, S. Myers, The large hadron collider, Progress in Par-
ticle and Nuclear Physics, Volume 67, Issue 3, 2012, Pages 705-734, ISSN 0146-6410,
https://doi.org/10.1016/j.ppnp.2012.03.001.(https://www.sciencedirect.com/science/article/pii/S0146641012000695)

[3] Mitrevski J 2015 Journal of Physics: Conference Series 664 072034

[4] CMS Collaboration et al. “The CMS experiment at the CERN LHC”. In: (2008).

[5] The ATLAS Collaboration and G Aad. “The ATLAS Experiment at the CERN Large Hadron
Collider”. In: Journal of Instrumentation 3.08 (Aug. 2008), S08003–S08003. DOI: 10.1088
/1748-0221/3/08/s08003. URL: https://doi.org/10.1088/1748-0221/3/08/s08003.

[6] DeZoort, G., Battaglia, P.W., Biscarat, C. et al. Graph neural networks at the Large Hadron
Collider. Nat Rev Phys 5, 281–303 (2023). https://doi.org/10.1038/s42254-023-00569-0

[7] "PyTorch Geometric: A Library for Geometric Deep Learning on Graphs and Manifolds,
https://pytorch-geometric.readthedocs.io/en/latest/

[8] Thomas N. Kipf and Max Welling. Semi-Supervised Classification with Graph Convolutional
Networks. 2017. arXiv: 1609.02907 [cs.LG].

[9] Petar Veličković et al. Graph Attention Networks. 2018. arXiv: 1710.10903 [stat.ML].

[10] Ashish Vaswani et al. Attention Is All You Need. 2023. arXiv: 1706.03762 [cs.CL].

[11] J. Alwall et al. “The automated computation of tree-level and next-to-leading order dif-
ferential cross sections, and their matching to parton shower simulations”. In: Jour-
nal of High Energy Physics 2014.7 (July 2014). doi: 10.1007/jhep07(2014)079. url:
https://doi.org/10.1007%2Fjhep07%282014%29079

[12] Christian Bierlich et al. A comprehensive guide to the physics and usage of PYTHIA 8.3.2022.
arXiv: 2203.11601 [hep-ph].

[13] J. de Favereau et al. “DELPHES 3: a modular framework for fast simulation of a
generic collider experiment”. In: Journal of High Energy Physics 2014.2 (Feb. 2014). doi:
10.1007/jhep02(2014)057. url: https://doi.org/10.1007%2Fjhep02%282014%29057

[14] Optimisation and performance studies of the ATLAS b-tagging algorithms for the
2017-18 LHC run. Tech. rep. All figures including auxiliary figures are available at
https://atlas.web.cern.ch/Atlas/GROUPS/PHYS-PUB-2017-013. Geneva: CERN, 2017. url:
https://cds.cern.ch/record/2273281

5


	Introduction
	The AUTOGRAPH pipeline
	Dataset handling
	Network architecture
	Training and performance evaluation

	Application of the pipeline on simulated datasets
	Conclusion

