

Parameterization of the Higgs boson STXS bins for the measurement of its self-coupling

Fábio Lucio Alves,^{*a*,*} on behalf of the ATLAS Collaboration

^aNanjing University, Hankou Road-Gulou Campus, Nanjing, China E-mail: fabio.lucio@cern.ch

Higgs pair production processes provide the direct probe to the Higgs boson self-coupling (λ_3). However, as well known such a processes have a small production cross section. It is also known that single Higgs processes indirectly depends on λ_3 , thus an alternative method to measure the λ_3 is considering λ_3 -dependent next-to-leading-order (NLO) electroweak (EW) corrections in single Higgs processes. The magnitude of these corrections are encoded by some process and kinematic-dependent coefficients named as C_1 . In the following, an overview of the determination and parametrization of the C_1 coefficients in Simplified Template Cross Sections (STXS) bins performed by ATLAS and CMS is shown in connection to the latest H+HH combination results with full Run 2 dataset.

The European Physical Society Conference on High Energy Physics (EPS-HEP2023) 21-25 August 2023 Hamburg, Germany

*Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0).

1. Introduction

Double Higgs (HH) searches provide direct access to probe the Higgs boson self-coupling (λ_3). However, as well known such processes have a small production cross section as $31.1^{+6.7\%}_{-23.2\%}$ fb for the Gluon-gluon fusion (ggF) and $1.73 \pm 2.1\%$ fb for the Vector boson fusion (VBF) processes. Alternatively, single Higgs (H) processes are sensitive to λ_3 through NLO EW corrections. An overview on the determination of C_1 coefficients for the single H cross sections parameterization as a function of the κ_{λ}^{-1} in the STXS 1.2 regions is described. Such parameterization facilitates the single H cross sections combination with the HH measurements which provides stringent constraints on the κ_{λ} .

2. Recipe for C₁ coefficients determination

The C_1 coefficients are computed differentially in the STXS 1.2 regions for the H(jj), $W(l\nu)H$, Z(ll)H and $t\bar{t}H$ (Figure 1) processes. The methodology detailed in [1] is briefly summarized in the following:

- About 5×10⁶ events are generated for each process using MadGraph5_aMC@NLO (v 2.5.5) using PDF set PDF4LHC15_nlo_mc;
- For each event, the weight representing LO cross section (w_{LO}) and the weight corrected by κ_{λ} -effects are computed (w_{NLO}) [2];
- Events are further classified in STXS 1.2 bins using Rivet toolkit routine. The C_1 coefficients in a given STXS 1.2 bin is computed as: $C_1^i = \sum_j w_{\text{NLO}}^j / w_{\text{LO}}^j$, where the sum runs over all the events in *i*-th STXS bin.

Figure 1: The (a) C_1 coefficients for the $t\bar{t}H$ in the STXS 1.2 bins are shown [1].

¹It is a common practice to define the κ_{λ} as the ratio between the λ_3 with respect to its SM prediction (λ_{SM}).

3. κ_{λ} constraints from the single Higgs and double Higgs combination

In order to improve the constraining on κ_{λ} , the following input analysis from single *H* channels as $H \rightarrow \gamma\gamma$ (all production modes), $H \rightarrow ZZ^* \rightarrow 4l$ (all production modes), $H \rightarrow \tau\tau$ (all production modes), $H \rightarrow WW \rightarrow e\nu\mu\nu$ (ggF and VBF), $H \rightarrow b\bar{b}$ (VBF, *VH* and $t\bar{t}H$) parameterized in STXS bins were combined with the three most sensitive HH channels as $HH \rightarrow b\bar{b}\gamma\gamma$, $HH \rightarrow b\bar{b}\tau\tau$ and $HH \rightarrow b\bar{b}b\bar{b}$ [3]. The profile likelihood ratio ($-2 \ln \Lambda$) as a function of κ_{λ} is shown in Figure 2 for different models: (a) Constraining on κ_{λ} from the single H combination only as $-4.0 < \kappa_{\lambda} < 10.3$ at 95% CL; (b) $-0.6 < \kappa_{\lambda} < 6.6$ at 95% CL from the double Higgs combination only; (c) $-0.4 < \kappa_{\lambda} < 6.3$ at 95% CL from the single H and HH combination which provides the most stringent constraints (in the fit all other coupling modifiers are fixed to unity); (d) $-1.4 < \kappa_{\lambda} < 6.1$ at 95% CL for the generic model where besides the κ_{λ} , the κ_t , κ_b , κ_V and κ_{τ} are also simultaneously floated in the fit. The result for this model still show strong constraint on κ_{λ} .

Figure 2: Observed values of the test statistic $(-2 \ln \Lambda)$ as a function of the κ_{λ} parameter for the single Higgs (blue) and HH (red) input analyses and their statistical combination (black) (fixing all other coupling modifiers to unity). The result for the generic model where κ_t , κ_b , κ_V and κ_{τ} are also simultaneously floated in the fit is also shown (green curve). The observed best-fit value of κ_{λ} for the generic model is shifted slightly relative to the other cases because of its correlation with the best-fit values of the κ_b , κ_t and κ_{τ} parameters, which are slightly below, but compatible with unity [3].

4. Summary

The recipe for the parameterization of the single H cross sections with respect to the SM prediction depending on the κ_{λ} in the STXS 1.2 regions is briefly described. Through this parameterization the differential information is extracted and further used for the combination with the HH searches. The combination between the single H and HH analyses is performed and the most strigent constrain to date on κ_{λ} is measured to be $-0.4 < \kappa_{\lambda} < 6.3$ at 95% CL.

References

- LHC Higgs Cross Section Working Group, Modelling of the single-Higgs simplified template cross-sections (STXS 1.2) for the determination of the Higgs boson trilinear self-coupling, Tech. Rep. LHCHWG-2022-002, CERN, Geneva (Mar, 2022).
- [2] F. Maltoni, D. Pagani, A. Shivaji and X. Zhao, *Trilinear Higgs coupling determination via single-Higgs differential measurements at the LHC, Eur. Phys. J. C* 77 (2017) 887 [1709.08649].
- [3] ATLAS collaboration, Constraints on the Higgs boson self-coupling from single- and double-Higgs production with the ATLAS detector using pp collisions at s=13 TeV, Phys. Lett. B 843 (2023) 137745 [2211.01216].

Signal channel	$\langle \epsilon \sigma \rangle_{ m obs}^{95}[{ m fb}]$	$S_{ m obs}^{95}$	S_{\exp}^{95}	CL_B	p(s=0)(Z)
nonres+VBF	0.07	9.7	$16.2^{+8.5}_{-5.2}$	0.08	0.13 (1.11)

Table 1: Left to right: 95% CL upper limits on the visible cross section $(\langle \epsilon \sigma \rangle_{obs}^{95})$ and on the number of signal events (S_{obs}^{95}) . The third column (S_{exp}^{95}) shows the 95% CL upper limit on the number of signal events, given the expected number (and $\pm 1\sigma$ excursions on the expectation) of background events. The last two columns indicate the CL_B value, i.e. the confidence level observed for the background-only hypothesis, and the discovery *p*-value (*p*(*s* = 0)).