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The unitarity condition of the Cabibbo-Kobayashi-Maskawa provides an important precision test
of the Standard Model. This test requires a good control of different theoretical contributions.
In this talk, we discuss the short-distance corrections to the weak effective theory as well as
the lattice-to-continuum matching for the semi-leptonic four-fermion operator. We compare
different renormalisation schemes used in the computation of these radiative corrections, namely
the𝑊-Mass scheme and the MS scheme. We also discuss the calculation of the two-loop O(𝛼𝛼𝑠)
electroweak corrections and the corresponding three-loop O(𝛼𝛼2

𝑠 ) anomalous dimension for the
effective theory Wilson coefficient. We also present numerical results for the O(𝛼𝛼𝑠) conversion
factor to the regularisation independent scheme, which is used in Lattice calculations.
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1. Introduction

Leptonic and semi-leptonic decays of mesons and nuclear beta decays probe the CKM matrix
and provide an electroweak precision test of the standard model (SM), see for example [1] and [2].
The precise measurements of Kaon decays [3] and nuclear beta decays [4] test Cabibbo-Kobayashi-
Maskawa (CKM) matrix unitarity in the first row

Δ𝐶𝐾𝑀 = 1 − |𝑉2
𝑢𝑑 | − |𝑉2

𝑢𝑠 | − O(|𝑉2
𝑢𝑏 |) = 0. (1)

Recent analyses and experimental results [5] have uncovered a tension of roughly 3𝜎 with respect to
the SM interpretation of these processes. Thus, an improvement in the precision of the theoretical
predictions is required. In particular, the extraction of the CKM matrix elements relies on precise
theoretical predictions of short distance QED and electroweak corrections, a determination of the
relevant decay constants and form factors, which can be done in the framework of lattice QCD, see
for example [6], and the treatment of isospin breaking corrections and long distance QED effects
using a combination of both chiral perturbation theory and lattice field theory [7, 8]. In the future
a first principle Lattice calculation of the QED corrections will become available and have to be
matched to continuum perturbation theory.

In this talk, we describe the systematic inclusion of higher-order corrections to the short-
distance contributions for the weak effective theory. In particular, we discuss the calculation of
two-loop O(𝛼𝛼𝑠) electroweak corrections at the high-scale, the three-loop O(𝛼𝛼2

𝑠) Anomalous
Dimension (ADM) and the matching to renormalsation schemes at the hadronic sale.

2. Effective Field Theory For Semi-leptonic Decays

The short-distance contribution to semi-leptonic processes can be approximated in the Standard
Model, to an outstanding precision, by an effective Hamiltonian

H(𝑥) = 4√
2
𝐺𝐹 𝑉

∗
𝑢𝑑 𝐶𝑂 𝑂 (𝑥) (2)

that involves only one charged current effective operator𝑂 (𝑥) =
(
𝑑 (𝑥)𝛾𝜇𝑃𝐿𝑢(𝑥)

) (
𝜈̄ℓ (𝑥)𝛾𝜇𝑃𝐿ℓ(𝑥)

)
,

where 𝑃𝐿 = (1 − 𝛾5)/2, 𝐺𝐹 is the Fermi constant extracted from the muon lifetime and 𝐶𝑂 is the
Wilson coefficient that is equal to one at leading order in the electroweak interactions. The full-
theory description of the semi-leptonic processes is recovered by imposing a matching condition
on S matrix elements at the electroweak scale 𝜇𝐸𝑊 ∼ 𝑀𝑊 , where 𝑀𝑊 is the mass of the𝑊 boson;
this allows for the extraction of the relevant Wilson coefficients that encodes the short-distance
behaviour.

2.1 𝑊-Mass Renormalisation Scheme

Higher-order corrections to the short-distance contribution are traditionally calculated in the
so-called𝑊-Mass scheme [9], which is still used in phenomenological analyses for the semi-leptonic
decays [7, 8]. In this scheme, the amplitude is regularized and renormalised by splitting the photon
propagator into two terms according to

1
𝑘2 −→ 1

𝑘2 − 𝑀2
𝑊

−
𝑀2
𝑊

𝑘2 − 𝑀2
𝑊

1
𝑘2 = 𝛾> + 𝛾<, (3)
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where 𝑘 is the momentum carried by the photon. The first term of (3), i.e. 𝛾> acts as a massive
photon propagator and only diagrams that involve 𝛾> are UV divergent after QCD renormalisation.
At O(𝐺𝐹𝛼) all poles are absorbed in the renormalisation of the Fermi constant. The second term,
that is 𝛾<, is UV finite, thanks to the 𝑊-boson mass 𝑀𝑊 acting as a hard UV cut-off, but results
in an IR contribution to the Fermi constant of O(𝛼𝑚2

𝜇/𝑀2
𝑊
). When 𝐺𝐹 is used to normalize

the weak Hamiltonian, such a contribution, while small, breaks the manifest separation of scales
that is a main virtue of the effective field theory approach. Moreover, the presence of a hard
UV cut-off, in this case the W-boson mass, does not allow for a straightforward re-summation of
the large logarithms in renormalisation group improved perturbation theory. QED corrections for
leptonic and semi-leptonic decays were calculated both in the current algebra approach [10], in
chiral perturbation theory [11–13] or in a combined approach with chiral perturbation theory [7]
where the electroweak box diagrams are calculated with lattice gauge theory [14].

The MS scheme is another possible scheme. It has been employed in Ref. [15, 16] for the
calculation of higher-order QED corrections to the Fermi theory that determine 𝐺𝐹 as defined in
Ref. [17]. This scheme is also used for the calculation of electroweak corrections to the weak
effective Hamiltonian [18], where the electroweak matching corrections and next-to-leading order
anomalous dimensions for the operator 𝑂 are given in Ref. [19]. Advantages of the MS scheme
are the separation of the electroweak and hadronic scale, and the EFT description of the decays.
Furthermore, this scale separation, together with the EFT approach, simplifies the new physics
interpretation and allows for a systematic inclusion of higher-order radiative corrections [20, 21].

The Fermi Operator in its Fierz-rearranged form ( 𝜇̄𝛾𝜇𝑃𝐿𝑒) (𝜈̄𝛾𝜇𝑃𝐿𝜈) comprises a conserved
QED current for 𝑚𝜇 = 𝑚𝑒. This symmetry restricts the scheme transformation between the MS and
𝑊-Mass scheme, since the decomposition (3) preserves the QED Ward identity. This is however
not true for the semi-leptonic operator 𝑂.

Scheme Transformation

Practical calculations for semi-leptonic corrections in the 𝑊-Mass scheme only involve the
UV-finite photon propagator 𝛾<, since the contribution of 𝛾> is absorbed into the definition of 𝐺𝐹 .
Yet, this calculational procedure is not well suited for a systematic scheme transformation to the
MS scheme, as the later scheme comprises the full range of momenta. To this end, we re-defined
the 𝑊-Mass scheme as an “on-shell” renormalisation scheme, where we split up the amplitudes
into 𝐴< and 𝐴> comprising 𝛾< and 𝛾> respectively. All amplitudes 𝐴> are cancelled by the
introduction of a local counter-term, as shown in Fig. 1, including the finite part. The amplitude 𝐴<
are finite after QCD subdivergencs have been subtracted. This defines the renormalisation condition
in the 𝑊-Mass scheme both for the operators and the external fermion fields. Once the operator’s
renormalisation constant 𝑍𝑊-Mass

𝑂
is extracted, we can define the scheme transformation as

CMS→𝑊-Mass = 𝑍MS
𝑂

(
𝑍𝑊−𝑀𝑎𝑠𝑠
𝑂

)−1
. (4)

Here, both 𝑍MS
𝑂

and 𝑍𝑊-Mass
𝑂

are matrices, that involve also an evanescent operator, see Ref. [20]
for details and specification of the notation. Using this definition of the scheme transformation, we
compared our results in the MS with the results expressed in the𝑊-Mass scheme [7], finding a total
agreement.
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Figure 1: On-shell formulation of the 𝑊-Mass renormalisation conditions for the effective semi-leptonic
operator. The renormalisation constants for the external fields are found by imposing similar conditions on
the two-point Green’s functions.

2.2 MS renormalisation Scheme

In Ref. [22] we calculate the electroweak corrections including next-to-leading logarithmic
QCD corrections to the Wilson coefficient 𝐶𝑂. This calculation comprises the determination of
the O(𝛼𝛼𝑠) correction to 𝐶𝑂 and the corresponding three-loop O(𝛼𝛼2

𝑠) Anomalous Dimension
(ADM) that governs its scale dependence. We employ the MS renormalisation scheme with Naive
Dimensional Regularization (NDR), as no ambiguous traces involving an anti-commuting 𝛾5 appear.
The calculation of the renormalisation constant is performed using Infra-Red re-arrangement [23].
This allows us to expand in external momenta and isolate the UV poles that determine the ADM.
We explicitly check locality and gauge independence of our results. Here and also for the matching
calculation we use the general 𝑅𝜉 gauge for all gauge bosons.

The inclusion of the three-loop ADM improves the precision of the Renormalisation Group
Equation (RGE) for𝐶𝑂. The evolution kernel satisfies 𝜇 𝑑

𝑑𝜇
U = 𝛾𝑂𝑂U and its perturbative solution

is given by

UMS(𝜇1, 𝜇2) =
(
𝛼(𝜇1)
𝛼(𝜇2)

) 𝛾
(𝑒)
𝑂𝑂
2𝛽0

(
𝛼𝑠 (𝜇1)
𝛼𝑠 (𝜇2)

)− 𝛾
(𝑒𝑠)
𝑂𝑂

2𝛽0,𝑠
𝛼(𝜇1 )

4𝜋
(
1 +

𝛾
(𝑒𝑒)
𝑂𝑂

2𝛽0

(
𝛼(𝜇1) − 𝛼(𝜇2)

4𝜋

)
+

+ 𝛼(𝜇1)
2𝛽0,𝑠

(
𝛾
(𝑒𝑠)
𝑂𝑂

𝛽1,𝑠

𝛽0,𝑠
− 𝛾 (𝑒𝑠𝑠)

𝑂𝑂

) (
𝛼𝑠 (𝜇1) − 𝛼𝑠 (𝜇2)

4𝜋

))
,

(5)

where 𝛾𝑒𝑒
𝑂𝑂

and 𝛾𝑒𝑠𝑠
𝑂𝑂

are the two-loop O(𝛼2) [21] and the three-loop O(𝛼𝛼2
𝑠) ADM respectively.

The electroweak corrections at 𝜇𝐸𝑊 and the ADM calculation are new results and were not
included in the recent effective field theory determination of the 𝑉𝑢𝑑 CKM matrix element from
neutron 𝛽−decay [21]. Their inclusion could potentially have an impact on the central value of this
theoretical extraction of 𝑉𝑢𝑑 and hence impact the unitarity condition (1) of the CKM matrix.

2.3 Lattice Matching

The non perturbative hadronic matrix elements ⟨𝜋(𝑝) |𝑑𝛾𝜇𝑃𝐿𝑢 |𝐾 (𝑝′)⟩ can be evaluated on
the Lattice [24]. The operator 𝑂 renormalises in the presence of QED corrections and the matrix
elements has to be renormalised. To make contact to the MS continuum calculation, an intermediate
scheme, such as Regularisation Independent (RI) [25, 26] scheme has to be introduced and a
corresponding conversion factor has to be calculated. We derived the two-loop conversion factor

4
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in Ref. [20], that is needed at the NLL QCD accuracy. The definition of the lattice renormalisation
scheme is sensitive to the choice of projectors. In particular, the projectors that has been used in the
literature before lead to unnecessary O(𝛼𝑠) contributions, which we could remove by a judicious
choice for the projectors. The resulting improvement is shown in Fig. 2, where only a tiny residual
scale dependence is present for the scheme defined with the improved projector.
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Figure 2: On the left: The Wilson coefficient in our expression of RI schemes. Scale dependence starts
only at O(𝛼𝛼𝑠). On the right: The Wilson coefficient in the traditional RI schemes. Scale dependence starts
already at O(𝛼𝑠).

3. Conclusions

In this proceeding we discussed higher order correction for the weak effective field theory
of semi-leptonic processes. We explained the scheme conversions of the 𝑊-Mass and the MS
renormalisation schemes at O(𝛼𝛼𝑠), the two-loop O(𝛼𝛼𝑠) electroweak matching and the three-
loop O(𝛼𝛼2

𝑠) anomalous dimension calculation. We plan [22] to use these results to improve
upon the effective field theory analysis of the neutron 𝛽−decay, which could potentially impact
the experimental test of CKM unitarity. In addition, we discussed our recent matching at O(𝛼𝛼𝑠)
between the non-perturbative lattice schemes and the MS schemes.
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