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high-precision theoretical predictions in particle physics. They govern the collinear behaviour
of scattering amplitudes, as well as the perturbative energy evolution of parton densities (PDFs)
and fragmentation functions (FFs). In this talk, we present the computation of multiple collinear
and higher-order QCD splittings with massive partons. Our results are highly-relevant for the
consistent introduction of mass effects in the subtraction formalism and PDF/FF evolution.
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1. Introduction

Considerable progress has been made in comprehending the factorization properties of hard-
scattering matrix elements involving massless partons. However, the scenario changes when dealing
with massive partons, demanding more dedicated endeavors, particularly in light of current (and
future) experiments in particle physics. The high-energy colliders, in their quest to understand
Standard Model (SM) and physics beyond it, have shown a pronounced interest in the production of
heavy quarks. In order to enhance the accuracy of theoretical predictions, it is imperative to account
for higher-order contributions beyond the leading order (LO) within perturbation theory. Equally
critical is the need to effectively manage explicit infrared (IR) poles and potentially substantial
logarithmic contributions resulting from scale hierarchies [1]. The application of QCD factorization
with massive particles emerges as a central element in the pursuit of these objectives.

It is well-known that radiation from massive partons is strongly suppressed in the collinear
limit by virtue of a phenomenon known as the dead-cone effect. Additionally, explicit collinear
poles in perturbative calculations are prevented by the presence of mass. However, they can still
result in IR finite contributions that scale as ln𝑝 (𝑄2/𝑚2), where 𝑄 represents the typical energy
scale of the hard-scattering process and 𝑚 signifies the mass of the heavy parton. In situations
where 𝑄2 ≪ 𝑚2, these substantial logarithmic contributions have the potential to detrimentally
affect both the numerical convergence and the reliability of theoretical predictions for a wide range
of observables.

The encouraging aspect is that these contributions can be computed in a manner that is
independent of the specific process [1] and can be resummed to all orders within perturbation
theory, as they are linked to the singular behavior of matrix elements as the mass approaches zero.
This singular behavior is governed by QCD factorization in the quasi-collinear limit, much like how
soft and collinear factorization control IR divergences. At O(𝛼𝑆), double-parton quasi-collinear
limits for various tree-level splitting processes were calculated in earlier works [2, 3].

In this talk, we study simultaneous collinear limit of three partons in sight of the importance
for accurately predicting dominant mass effects in phenomenological analysis. We calculate the
full set of splitting amplitudes and kernels involved in QCD and QED processes, which were
presented for the first time in Ref. [4]. At the squared amplitude level, we also entirely consider
azimuthal correlations, which are distinctive of the gluon splittings and are indispensable in devising
general procedures for the precise computation of jet cross sections involving massive particles at
next-to-next-to-leading order (NNLO).

2. Collinear and quasi-collinear limits

Let us briefly describe the multiple collinear limit of scattering amplitudes and review the con-
cept of splitting amplitudes [1, 5–7]. We consider a scattering process at tree level with 𝑁-external
particles and with a subset 𝐶 = {1, . . . , 𝑚} composed by particles emitted in the same direction;
i.e. 𝑚 particles become simultaneously collinear. We denote by |M (0) (𝑝1, . . . , 𝑝𝑚, . . . , 𝑝𝑁 )⟩ the
corresponding scattering amplitude, with 𝑝

𝜇

𝑖
being the four-momentum associated with particle 𝑖

and 𝑝1...𝑚 = 𝑝1 + . . . + 𝑝𝑚. We will denote with 𝑎𝑖 the flavour of particle 𝑖, although we will avoid
indicating this explicitly unless it is strictly required. To continue the description of the collinear
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emission, it is useful to introduce the ancillary light-like vector 𝑛 and define

𝑃𝜇 = 𝑝
𝜇

1...𝑚 −
𝑝2

1...𝑚
2 𝑛 · 𝑝1...𝑚

𝑛𝜇 , (1)

which corresponds to the collinear on-shell direction, where 𝑠1...𝑚 ≡ 𝑝2
1...𝑚 = (𝑝1 + . . . + 𝑝𝑚)2 and

𝑃2 = 0 by construction. In this way, the vector 𝑛 indicates how we are approaching to the strict
collinear limit. The next step consists in adopting the Sudakov parametrization for the collinear
momenta, i.e.

𝑝
𝜇

𝑖
= 𝑧𝑖𝑃

𝜇 + 𝑘
𝜇

⊥𝑖 −
𝑘2
⊥𝑖

2 𝑧𝑖 𝑛 · 𝑃
𝑛𝜇 , 𝑖 ∈ 𝐶 , (2)

where 𝑧𝑖 represents the momentum fraction carried by the particle 𝑖 in the collinear direction and
𝑘⊥𝑖 the projection of 𝑝𝑖 in the space transverse to 𝑛 and 𝑃. Then, we have the useful identities
𝑛 · 𝑘⊥𝑖 = 0 and 𝑃 · 𝑘⊥𝑖 = 0, as well as∑︁

𝑖

𝑧𝑖 = 1 ,
∑︁
𝑖

𝑘
𝜇

⊥𝑖 = 0 . (3)

With this parametrization, we define the collinear limit as 𝑝2
1...𝑚 → 0, or alternatively by performing

the rescalling 𝜆 𝑘⊥𝑖 for 𝑖 ∈ 𝐶 and taking the limit 𝜆 → 0. Due to strict collinear factorization
properties [6, 8], the tree-level amplitude factorizes according to

|M (0) (𝑝1, . . . , 𝑝𝑁 )⟩ ≈ 𝑺 𝒑 (0)
𝑎1...𝑎𝑚 (𝑝1, . . . , 𝑝𝑚; 𝑃) |M (0) (𝑃, 𝑝𝑚+1, . . . , 𝑝𝑁 )⟩ , (4)

which is valid for the most singular terms in the limit 𝑠1...𝑚 → 0. The splitting amplitude
𝑺 𝒑 (0)

𝑎1...𝑎𝑚 (𝑝1, . . . , 𝑝𝑚; 𝑃) is a universal factor that fully embodies the singular behaviour of any
scattering amplitude when the parent particle 𝑎 with momenta 𝑃 undergoes a collinear splitting into
the particles {𝑎𝑖}𝑖∈𝐶 , and only depends on information carried by these collinear particles.

Now, we proceed to characterize splitting processes in which massive particles are involved.
In first place, it is straightforward to prove that collinear singularities are absent, since the mass acts
as a regulator. Still large-logarithmic corrections might spoil the numerical convergence. At this
point, let us consider the same matrix element introduced in the beginning of this section, and lift
off the massless restriction. Namely, we consider that each particle 𝑎𝑖 within the subset 𝐶 has an
arbitrary mass 𝑚𝑖 . The mass of the parent particle 𝑎, which undergoes the splitting, is 𝑚1...𝑚. Since
this parent particle is generally off shell because 𝑝2

1...𝑚 ≠ 𝑚2
1...𝑚, we define the on-shell vector

𝑃𝜇 = 𝑝
𝜇

1...𝑚 −
𝑝2

1...𝑚 − 𝑚2
1...𝑚

2 𝑛 · 𝑝1...𝑚
𝑛𝜇 , (5)

which fulfils 𝑃2 = 𝑚2
1...𝑚. Then, we modify the Sudakov parametrization given in Eq. (2) according

to

𝑝
𝜇

𝑖
= 𝑥𝑖𝑃

𝜇 + 𝑘
𝜇

⊥𝑖 −
𝑘2
⊥𝑖 + 𝑥2

𝑖
𝑚2

1...𝑚 − 𝑚2
𝑖

𝑥𝑖

𝑛𝜇

2 𝑛 · 𝑃
, 𝑖 ∈ 𝐶 , (6)

where we defined

𝑧𝑖 =
𝑥𝑖∑𝑚
𝑗=1 𝑥 𝑗

, 𝑘̃
𝜇

𝑖
= 𝑘

𝜇

⊥𝑖 − 𝑧𝑖

𝑚∑︁
𝑗=1

𝑘
𝜇

⊥ 𝑗
. (7)
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Notice that we recover the usual notion of momentum fraction if we set
∑

𝑖 𝑥𝑖 = 1. Also, we can
distinguish

𝑠𝑖 𝑗 ≡ (𝑝𝑖 + 𝑝 𝑗)2 = −𝑧𝑖𝑧 𝑗

(
𝑘̃ 𝑗

𝑧 𝑗
− 𝑘̃𝑖

𝑧𝑖

)2

+ (𝑧𝑖 + 𝑧 𝑗)
(
𝑚2

𝑖

𝑧𝑖
+
𝑚2

𝑗

𝑧 𝑗

)
, (8)

and

𝑠𝑖 𝑗 ≡ 2𝑝𝑖 · 𝑝 𝑗 = 𝑧𝑖𝑧 𝑗

−
(
𝑘̃ 𝑗

𝑧 𝑗
− 𝑘̃𝑖

𝑧𝑖

)2

+
𝑚2

𝑖

𝑧2
𝑖

+
𝑚2

𝑗

𝑧2
𝑗

 , (9)

which are equivalent only in the massless case. It turns out that, by virtue of Eq. (8), the invariant
mass of the splitting system depends on {𝑘2

⊥𝑖 , 𝑚
2
𝑖
} and 𝑚2

1...𝑚. So, this allow us to formally define
the quasi-collinear kinematical region by uniformly rescalling these variables, i.e.

𝑚𝑖 → 𝜆 𝑚𝑖 , 𝑘⊥𝑖 → 𝜆 𝑘⊥𝑖 , 𝑚1...𝑚 → 𝜆 𝑚1...𝑚 , (10)

and taking the limit 𝜆 → 0. Keeping the most singular terms in 𝜆, we recover the factorization
formula in Eq. (4). Even if the structure is formally the same, there are some relevant differences.
For instance, the massive splittings have an implicit (and often explicit) dependence on the mass,
embodied in the scalar products involving 𝑝𝑖 for massive partons.

3. Massive triple collinear splittings

In this section, we present selected unpolarized splitting kernels in the triple collinear limit.
We limit ourselves to report the expressions shown in Ref. [4], following the notation introduced
there. For the quark-initiated process with two different quark flavours, we obtain

⟨𝑃̂ (0)
𝑄̄′

1𝑄
′
2𝑄3

⟩ = 𝐶𝐹𝑇𝑅

{
𝑠12𝑠123

2𝑠2
12

[
−

𝑡212,3

𝑠12𝑠123
+ 4𝑧3 + (𝑧1 − 𝑧2)2

1 − 𝑧3
+ (1 − 2𝜖)

(
𝑧1 + 𝑧2 −

𝑠12
𝑠123

)]
+

2𝑚2
𝑄′

𝑠2
12

[
𝑧3𝑠123

(1 − 𝑧3)2 (1 + 2𝑧3 − 3𝑧2
3 + 4𝑧1𝑧2) −

𝑠23
1 − 𝑧3

(2 − 3𝑧1 − 5𝑧2 + 𝑧2
1 + 𝑧2

2)

− 𝑠13
1 − 𝑧3

(2 − 5𝑧1 − 3𝑧2 + 𝑧2
1 + 𝑧2

2) − 𝜖

(
𝑠123(1 − 𝑧3) − 𝑠12(1 + 𝑧3)

)]
− 2

𝑚2
𝑄
𝑠12

𝑠2
12

+
4𝑚4

𝑄′

𝑠2
12

𝑧3

[
𝜖 + 2𝑧1𝑧2

(1 − 𝑧3)2 + 2𝑧3
1 − 𝑧3

]
− 4

𝑚2
𝑄
𝑚2

𝑄′

𝑠2
12

}
, (11)

where
𝑡𝑖 𝑗 ,𝑘 = 2

𝑧𝑖𝑠 𝑗𝑘 − 𝑧 𝑗 𝑠𝑖𝑘

𝑧𝑖 + 𝑧 𝑗
+
𝑧𝑖 − 𝑧 𝑗

𝑧𝑖 + 𝑧 𝑗
𝑠𝑖 𝑗 , (12)

is a kinematical variable, first introduced in Ref. [5] since it leads to a very compact expression.
Also, we present the unpolarized gluon-initiated splitting kernel, given by

⟨𝑃̂ (0)
𝑔1𝑄2𝑄̄3

⟩ = 𝐶𝐹𝑇𝑅 ⟨𝑃̂ (0,ab)
𝑔1𝑄2𝑄̄3

⟩ + 𝐶𝐴𝑇𝑅 ⟨𝑃̂ (0,nab)
𝑔1𝑄2𝑄̄3

⟩ , (13)
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with

⟨𝑃̂ (0,ab)
𝑔1𝑄2𝑄̄3

⟩ =

{ [
𝑠2

123
(
𝑧2

1(1 − 𝜖) + 2(1 − 𝑧2)𝑧3 − 𝜖
)

𝑠12𝑠13(1 − 𝜖) + 2𝑠123((𝑧1 + 1)𝜖 + 𝑧2 − 1)
𝑠12(1 − 𝜖) − 𝜖

+ 𝑠13(1 − 𝜖)
𝑠12

]
+

[
𝑚2

𝑄

𝑠12

(
2𝑠123(2(1 − 𝑧3)𝑧3 + 𝜖 − 1)

𝑠12
+ 2𝑠123(𝑧1 + 2𝑧2𝑧3 + 𝜖)

𝑠13
− 4

)
−

4𝑚4
𝑄

𝑠13

(
1
𝑠12

+ 1
𝑠13

)]
1

1 − 𝜖

}
+ (2 ↔ 3) , (14)

and

⟨𝑃̂ (0,nab)
𝑔1𝑄2𝑄̄3

⟩ =

{ [
𝑠2

123𝑧3

2𝑠23𝑠13

(
(1 − 𝑧1)3 − 𝑧3

1
𝑧1(1 − 𝑧1)

− 2𝑧3(−2𝑧1𝑧2 − 𝑧3 + 1)
𝑧1(1 − 𝑧1) (1 − 𝜖)

)
−

𝑠2
123

2𝑠12𝑠13

(
𝑧2

1 −
𝑧1 + 2𝑧2𝑧3

1 − 𝜖
+ 1

)
−

(𝑡23,1)2

4𝑠2
23

+ 𝜖

2
− 1

4
+ 𝑠123

2𝑠23

(
𝑧3

1 + 1
𝑧1(1 − 𝑧1)

+ 𝑧1(𝑧3 − 𝑧2)2 − 2(𝑧1 + 1)𝑧2𝑧3
𝑧1(1 − 𝑧1) (1 − 𝜖)

)
+ 𝑠123(1 − 𝑧2)

2𝑠13

(
− 2(1 − 𝑧2)𝑧2
𝑧1(1 − 𝑧1) (1 − 𝜖) +

1
𝑧1(1 − 𝑧1)

+ 1
)]

+
[
𝑚2

𝑄

𝑠2
23

(
2𝑠2

123(1 − 𝑧2)
𝑠13(1 − 𝑧1)𝑧1

−
𝑠3

123(𝑧1 + 2𝑧2𝑧3 + 𝜖)
𝑠12𝑠13

−
2𝑠2

123𝑧
2
1(1 − 2𝑧2)

𝑠13(1 − 𝑧1)

+
2𝑠2

123(4(1 − 𝑧2)𝑧2 + 𝑧2 + 2𝜖 − 2)
𝑠13

− 2𝑠123𝑠12𝑧2
𝑠13(1 − 𝑧1)

− 2𝑠123𝑠12𝑧3
𝑠13𝑧1

− 𝑠123(𝑧1(1 − 4𝑧2) + 4(1 − 𝑧2)𝑧2 + 2𝜖 + 3) + 𝑠123
𝑧1

+ 4𝑠12

−
2𝑠123𝑠12

(
𝑧2 − 2𝑧2

2 + 𝜖
)

𝑠13

)
+

2𝑚4
𝑄

𝑠12𝑠13

]
1

1 − 𝜖

}
+ (2 ↔ 3) . (15)

In order to check the validity of our calculations, we consider the massless limit, recovering the
well-known expressions available in Ref. [5].

4. Conclusions and outlook

In this talk, we have discussed the first calculation of triple-collinear splitting amplitudes and
(un)polarized splitting kernels with massive partons at tree-level in QCD [4]. We present selected
results for the unpolarized kernels, corresponding to the splitting processes 𝑄 → 𝑄′

1𝑄̄
′
2𝑄3 and

𝑔 → 𝑔1𝑄2𝑄̄3.
The study of the quasi-collinear limit and, in particular, the calculation of the associated

multiple-collinear splittings with massive partons plays an important role in the consistent inclusion
of mass effects in high-precision collider physics. These results could be used for improving the
currently available subtraction frameworks, since the massive splittings are crucial for building
counter-terms. Besides, the full set of triple-collinear splitting kernels with massive partons could
allow to consistently include mass effects in a new parton shower generators. Finally, we could
use the results provided in Ref. [4] to calculate higher-order corrections to Altarelli-Parisi kernels
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including mass effects, which might allow to determine the evolution of PDFs/FFs at the highest-
precision taking consistently into account the masses of the heavy quarks.

Note: After our paper was released on arXiv (and more than a month after our results were
presented at EPS-HEP 2023), an independent calculation of the quark-initiated massive triple-
collinear splitting kernels was presented in Ref. [9] and it is in agreement with our expressions.
Notice also that Ref. [4] includes full results both for splitting amplitudes and splitting kernels.
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