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The Transverse Momentum Dependent (TMD) Parton Branching (PB) method is a Monte Carlo
(MC) approach to obtain QCD high energy collider predictions grounded in ideas originating
from the TMD factorization. It provides an evolution equation for the TMD parton distribution
functions (TMDs) and a framework to use those within TMD MC generators.
This work focuses on the structure of the PB Sudakov form factor. The Sudakov form factor
is factorized in the perturbative and non-perturbative regions by introducing an intermediate
separation scale motivated by angular ordering. The logarithmic order of the perturbative low-qt
resummation achieved so far by the PB Sudakov is discussed by comparing it to the Collins-Soper-
Sterman (CSS) method and is increased up to next-to-next-to-leading logarithm (NNLL) with the
use of physical (effective) coupling. A non-perturbative Sudakov form factor provides a term
analogous to Collins-Soper (CS) kernel. The effects of different evolution scenarios, including
or not the non-perturbative Sudakov contribution, on a numerical extraction of the CS kernel are
investigated.
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1. Introduction

In the period of preparation for LHC High Luminosity phase and designing of new machines
(e.g. Electron-Ion-Collider (EIC)) the need to develop general purpose Monte Carlo (MC) event
generators becomes urgent. The baseline MC generators are based on collinear factorization [1]
which assumes that partons move collinearly with the hadron they built and the transverse degrees of
freedom are neglected. This limitation has to be however overcome and the 3D structure of hadrons
has to be taken into account in order to exploit the full potential of the future experiments. The
method, which was developed for this purpose, is the Transverse Momentum Dependent (TMD)
Parton Branching (PB) [2, 3]: a MC framework to obtain QCD high energy collider predictions
based on ideas originating from TMD factorization [4, 5]. In this work, the recent study of the
PB Sudakov form factor in the context of TMD factorization [6] is summarized: the development
to increase the precision of the PB TMD evolution equation to next-to-next-to-leading logarithm
(NNLL) is presented and, in the second part of the paper, the Collins-Soper (CS) kernel extraction
from PB predictions is performed, for different evolution scenarios.

2. PB Sudakov form factor

The TMD PB method provides an evolution equation [2, 3] for the momentum weighted TMD
parton densities xAa = Ãa. Thanks to the momentum sum rule of the DGLAP splitting functions∑

b

∫ 1
0 dz zPba = 0, the PB Sudakov form factor can be written with virtual splitting functions 1

∆a(µ
2, µ2

0) = exp

(
−

∫ µ2

µ2
0

dµ′2

µ′2

(∫ zM

0
ka(αs)

1
1 − z

dz − da(αs)
))

, (1)

where a is the parton species index, z is the splitting variable, zM is the soft-gluon resolution
scale, defining resolvable and non-resolvable branchings, µ′ is the evolution variable defining the
branching scale, and αs is the strong coupling. PB applies angular ordering (AO) of Catani-
Marchesini-Webber (CMW) [7], to relate the transverse momentum of the emitted parton q⊥ with
the scale µ′ and in most of the PB applications, the soft gluon resolution scale is zM ≈ 1. However,
when one assumes the existence of a q0, a minimum q⊥ with which emitted parton can be resolved,
then fromAO one obtains a condition onmaximum dynamical value of zM [7]: zdyn(µ′) = 1−q0/µ

′.
Motivated by AO, the PB Sudakov form factor of Eq. 1 with zM ≈ 1, can be decomposed in

two regions by using as an intermediate scale zdyn. With that, the phase space is divided in two
regions: (i) perturbative (P) for z < zdyn, which corresponds to |q⊥ | > q0 and (ii) non-perturbative
(NP) zdyn < z < zM (zM = 1 − ε with 0 ' ε � 1), for which |q⊥ | < q0, resulting in

∆a(µ
2, µ2

0) = exp

(
−

∫ µ2

µ2
0

dµ′2

µ′2

[∫ zdyn(µ
′)

0
dz

ka(αs)
1 − z

− da(αs)
])

× exp

(
−

∫ µ2

µ2
0

dµ′2

µ′2

∫ zM

zdyn(µ′)
dz

ka(αs)
1 − z

)
= ∆

(P)
a

(
µ2, µ2

0, q0

)
· ∆
(NP)
a

(
µ2, µ2

0, ε, q
2
0

)
. (2)

1The splitting functions can be decomposed as Pab(z, αs) = δabda(αs)δ(1 − z) + δabka(αs) 1
(1−z)+ + Rab(z, αs),

with real parts being PR
ab
= δabka(αs) 1

1−z + Rab(z, αs) and the virtual corrections PV
a = ka 1

1−z − daδ(1 − z).
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This trick allows to discuss the resummation accuracy of PB and it’s non-perturbative component
from the evolution.

Perturbative Sudakov: After mapping the evolution variable µ′2 to transverse momentum q2
⊥

[8], assuming µ0 ≈ q0 = O(1 GeV) and using q2
⊥ as the scale of αs (as used commonly in PB

applications), the perturbative Sudakov can be written as:

∆
(P)
a (µ

2, q2
0) = exp

(
−

∫ µ2

q2
0

dq2
⊥

q2
⊥

[
1
2

ka(αs) ln
(
µ2

q2
⊥

)
− da(αs)

])
. (3)

The structure of Eq. 3 may be compared with the structure of the perturbative CSS Sudakov form
factor which (with appropriate scale choices) can be written as

∆
CSS1 (P)
a (µ2, µ2

b∗) = exp

(
−

∫ µ2

µ2
b∗

dµ′2

µ′2

[
Aa(αs) ln

(
µ2

µ′2

)
+ Ba(αs)

])
, (4)

with A and B having the expansions Ra =
∑

n(αs/2π)nR
(n)
a . One can then attempt to compare

the PB and CSS coefficients order by order. A pure nth logarithmic order cannot be obtained with
Eq. 3. When leading order (LO) splitting functions are used, the k(0)a coefficient coincides with A(1)a
providing the double logarithmic term at leading logarithmic (LL) accuracy and the d(0)a coefficient
coincides with − 1

2 B1
a 2 giving the single logarithmic term at the next-to-leading logarithmic (NLL)

accuracy. With next-to-leading order (NLO) splitting functions, the k(1)a (equal to A(2)a ) provides the
double logarithmic term at NLL and a part of NNLL resummation is included by the d(1)a coefficient.
At this stage the pattern breaks: because of collinear anomaly [9] the NNLL resummation cannot
be achieved by Eq. 3. The possible difference between the d(1)a and B(2)a of the PB and CSS can be
explained by scheme dependence originating from the renormalization group equation [10] but the
A(3)a is scheme independent and the next-to-next-to-leading order (NNLO) DGLAP coefficient k(2)a
does not correspond to the CSS double logarithmic coefficient at NNLL, A(3)a .

Eq. 3 can be modified by introducing the physical (effective) soft-gluon coupling [7, 11, 12] to
achieve NNLL:

∆
(P)
a (µ

2, q2
0) = exp

(
−

∫ µ2

q2
0

dq2
⊥

q2
⊥

[
1
2

ka(α
phys
s ) ln

(
µ2

q2
⊥

)
− da(α

phys
s )

])
, (5)

where the physical soft-gluon coupling is defined as αphys
s = αs

(
1 +

∑∞
n=1K

(n)
(αs

2π
)n) . With a

proper combination of DGLAP splitting functions at a given order and physical coupling with
selected coefficients, the PB predictions with a pure NLL and NNLL coefficients in the Sudakov
form factor are obtained for the first time [6]. In the left and middle panel of Fig. 1 one can
see TMDs and integrated TMDs (iTMDs) for down quark at 100 GeV (and x = 0.001 for the
TMD case) for the following evolution settings: 1.) NLO: NLO splitting functions + 2-loop αs;
2.) NLL: LO splitting functions + 2-loop αs modified according to αNLL

s = αs
(
1 +K (1)

(αs

2π
) )
; 3.)

NNLL: NLO splitting functions + 2-loop αs modified according to αNNLL
s = αs

(
1 +K (2)

(αs

2π
)2

)
.

2The 1
2 difference originates from the fact that in PB two separately evolved TMDs are matched with a matrix element

to get the final cross section. In CSS notation, the exponents from the evolution of each TMD are combined in one
common Sudakov form factor ∆CSSa .
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In all curves, zM = 1 − 10−5 and αs(q2
⊥) is used and the starting distribution is HERAPDF2.0

[13]. The q0 is chosen to be q0 = 1.0 GeV, for |q⊥ | < 1.0 GeV αs is frozen to the value αs(q0).
The physical coupling has been implemented both in the Sudakov form factor as well as in the
real emission probabilities to ensure momentum conservation [14]. Both for TMDs and iTMDs,
the difference between NLL and NLO is significant whereas the difference between the NLO and
NNLL predictions is of the order of few %. The investigated TMDs were matched by CASCADE3
[15] to NLO matrix element generated with iTMD PB-NLO-2018-Set2 [16] using the method of
[17], to investigate the impact of NLL and NNLL evolution on Z boson p⊥ spectrum at LHC.
From the right panel of Fig. 1 one can see that there is a large difference between the NLL and
NLO results and the effect of going from NLO to NNLL is of the order of few %. The qualitative
observed behaviour is similar to the results obtained e.g. in [18].

Non-perturbative Sudakov: In the region |q⊥ | < q0, the argument of αs is set to αs(q0). With
that, the non-perturbative PB Sudakov is

ln∆(NP)a (µ2, µ2
0, ε, q

2
0) = −

ka(αs)
2

ln

(
µ2

µ2
0

)
ln

(
q2

0
ε2µ0µ

)
. (6)

The logarithm of µ2/µ2
0 corresponds to the CS kernel structure of the CSS method.

Motivated by this observation, we use the method of [19] to extract CS kernels from 4
phenomenological models, with and without ∆NP

a , all evolved with NLO splitting functions and
2-loop αs (i.e. no A3 coefficient included): 1.) with αs(q2

⊥) and zM = 1− 10−5, with q0 = 1.0 GeV,
αs = αs(max(q2

0, q
2
⊥)); 2.) with αs(µ′2) and zM = 1−10−5; 3.) with αs(q2

⊥) and zM = 1−q0/µ
′with

q0 = 1.0 GeV (i.e. no non-perturbative Sudakov form factor); 4.) with αs(q2
⊥) and zM = 1 − q0/µ

′

with q0 = 0.5 GeV (i.e. no non-perturbative Sudakov form factor). Obtained CS kernels are shown
in Fig. 2. The results show sensitivity to the treatment of radiation: the model with the biggest
amount of soft radiation (1.) is linear at large b. When the soft region is limited by neglecting the
non-perturbative sudakov (3.), the kernel behaviour becomes flat at large b. When the q0 is lowered
to q0 = 0.5 GeV (4.), the additional branchings compared to model 3. lead to a significant change
in the large b region: despite having no non-perturbative Sudakov, the orange curve is close to the
red one. The model with αs(µ′) (2.) has a contribution from very soft radiation but different scale
of the coupling leads to very different kernel shape.

3. Conclusions

The structure of the PB Sudakov form factor was investigated in the context of TMD fac-
torization thanks to the decomposition of the PB Sudakov form factor into perturbative and non-
perturbative parts, achieved by introducing an intermediate scale zdyn motivated by AO. Using
the physical soft-gluon coupling, the accuracy of the perturbative low q⊥ resummation of the PB
Sudakov was extended up to NNLL. The non-perturbative Sudakov form factor revealed a structure
of CS kernel. The CS kernel was extracted from PB predictions for 4 models, with and without
non-perturbative Sudakov. Modelling of the radiation has a huge impact on the shape of extracted
kernels.
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Figure 1: The PB iTMDs (left) and TMDs (middle) obtained with NLO, NLL and NNLL evolution for
down quark at 100 GeV (and x = 0.001 for the TMD case). The prediction for Z boson p⊥ at 8 TeV (right)
obtained with NLO ME matched to the TMDs shown in the middle plot.
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Figure 2: The CS kernels extracted from PB method for different evolution scenarios.
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