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The Jiangmen Underground Neutrino Observatory (JUNO) with its satellite Taishan Antineutrino
Observatory (TAO) is a next-generation neutrino experiment with a broad physics program.
Currently under construction, JUNO is expected to start data-taking in 2024. The central detector
of JUNO is an acrylic sphere filled with 20 kt of liquid-scintillator (LS) surrounded by 43212
photomultiplier tubes (PMTs).
The primary goals of the experiment are to determine the neutrino mass ordering (NMO) within
3-4𝜎 in 6 years and to measure neutrino oscillation parameters sin2 𝜃12, Δ𝑚2

21, Δ𝑚2
31 with sub-

percent precision. To achieve the goals, JUNO will study reactor antineutrino emitted from two
nuclear power plants located 52.5 km away from the detector.
The main requirement for JUNO is a high energy resolution. The detector is constructed to
provide an energy resolution of 3% at 1 MeV. In this study, neutrino energy reconstruction with
machine learning techniques is presented. The reconstruction techniques are based on aggregated
information collected by PMTs. Two models are considered: Boosted Decision Trees and Fully
Connected Deep Neural Network. Moreover, the transferability of the approach is shown with an
example of JUNO’s satellite detector TAO.
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1. Introduction
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Figure 1: Schematic view of the JUNO central
detector and other main components

The Jiangmen Underground Neutrino Observa-
tory (JUNO) is a neutrino observatory with a broad
physics program located in China 52.5 km away from
two power plants: Taishan and Yangjiang [1]. The
central detector (CD) of JUNO is an acrylic sphere
35.4 meters in diameter filled with 20 kt of LS. The
CD target is watched by a large number of PMTs of
two types: 17612 large 20-inch tubes (LPMTs) and
25600 small 3-inch tubes (SPMTs). The PMT array
provides almost 78% of photo coverage of the de-
tector. To provide JUNO with a reference spectrum,
a satellite experiment, called Taishan Antineutrino

Observatory (TAO) is also under construction [2]. The TAO’s detector is an acrylic sphere of 1.8
m diameter, filled with 2.8 tons of gadolinium-doped LS. Being located 30 m away from one of the
Taishan reactor cores, TAO will be able to measure the reactor neutrino energy spectrum with a
resolution of ∼2% at 1 MeV. To achieve this energy resolution, the detector is equipped with 4024
silicon photomultipliers that cover ∼94% of the sphere. Figure 2 shows a schematic view of TAO.

Figure 2: A schematic view of the TAO
detector and its main components.

The main goal of the JUNO experiment is to deter-
mine the neutrino mass ordering (NMO) within 3-4𝜎 in 6
years. The main requirement to ensure resolving NMO is
an energy resolution of ∼3% at 1 MeV. Moreover, JUNO
will be able to measure the following oscillation parame-
ters sin2 𝜃12, Δ𝑚2

21, Δ𝑚2
31 with sub-percent precision.

The main reaction for detecting neutrinos in JUNO
is Inverse Beta Decay (IBD): 𝜈𝑒 + 𝑝 → 𝑒+ + 𝑛. The
PMT array collects optical photons emitted within the
signals. The collected information is used to reconstruct
the deposited energy analysing the temporal distribution
and spatial pattern of fired PMTs. Since almost all the
neutrino energy converts into the energy of the positron,
by reconstructing its energy we can recover the initial neutrino energy using the following expression:
𝐸 �̃�𝑒 ≈ 𝐸e+ + 0.8 MeV. In this study, we use only positron events, assuming event selection is
performed.

2. Machine Learning Approach

As previously mentioned, the JUNO central detector is equipped with a huge number of PMTs:
17612 large PMTs and 25600 small ones. From each PMT two values can be extracted: the charge
and first hit time (FHT). Thus, each event is described by 86424 variables (many of them are usually
zeros). Such a high-dimensional input requires additional processing. By increasing the complexity
of models and reducing the leakage of information, the following sequence of approaches can be
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considered: 1) an approach based on aggregated information with simple models, 2) convolutional
neural networks, and 3) graph neural networks.

In this work, the aggregated features approach is studied. The aggregated features are used as
input for the following models: Boosted Decision Trees (BDT) and Fully Connected Deep Neural
Network (FCDNN). The study is a continuation of Ref. [3] and uses an updated JUNO software [4]
and also adds information collected by SPMTs. Moreover, the transferability of the approach to
other LS-based detectors is described with the example of the JUNO-TAO detector (Section 2.2).
The study of PMT-wise approaches 2) and 3) can be found in Ref. [5].

The advantage of the simpler approach 1) is that it is more interpretable since the aggregated
features are constructed based on physical intuition and exploratory data analysis. Moreover, a small
number of features provides faster inference. On the other hand, approaches 2) and 3) lose less
information and can potentially achieve higher precision. The drawbacks of using more complex
models are limited interpretability, slower inference, and more complicated training. The latter can
be especially important in the early phase of data-taking when models need to be retrained every
time according to the constantly updated simulation software.

Notation Description
AccumCharge Total accumulated charge
nPMTs Number of fired PMTs
𝑥cc, 𝑦cc, 𝑧cc, 𝑅cc, 𝜃cc, 𝜙cc, 𝐽cc, 𝜌cc, 𝛾cc

𝑧 , 𝛾cc
𝑦 , 𝛾cc

𝑥 Center of charge
pen%, pemean, pestd, peskew, pekurtosis Charge distribuion
𝑥cht, 𝑦cht, 𝑧cht, 𝑅cht, 𝜃cht, 𝜙cht, 𝐽cht, 𝜌cht, 𝛾cht

𝑧 , 𝛾cht
𝑦 , 𝛾cht

𝑥 Center of FHT
htn%, htni+1%−ni%, htmean, htstd, htskew, htkurtosis FHT distribution

Table 1: List of all feature notations with brief descriptions. Here, n ∈ {2, 5, 10, 15, ..., 90, 95}.

Table 1 collects and briefly describes the full set of engineered features and the detailed
description can be found in Ref. [3]. AccumCharge is the total charge accumulated on all fired
PMTs and it is at first order proportional to 𝐸dep. Other features, e.g., the center of charge and center
of FHT provide a rough approximation of the vertex and help to correct the non-uniformity of the
response. Additional information about the signal is extracted from charge and FHT distributions
by computing their moments and decomposing them with percentiles. In total, the set consists of
91 features.

2.1 JUNO central detector

To train models and to evaluate their performance, we prepared the training and the testing
datasets, generated by the full detector Monte Carlo method using the official JUNO software [4].

Many of the 91 features, described in the previous section, are highly correlated and we want
to keep only a subset of them which provides the same performance of the model as the full set.
By using a greedy algorithm for feature selection described in Ref. [3], we kept the following 17
features (sorted by importance):

AccumCharge, 𝑅cht, Jcc, ht20%−15%, pestd, nPMTs, zcc, htstd,Rcc, ht30%−25%,

ht5%−2%, pemean, ht15%−10%, ht25%−20%, ht35%−30%, ht10%−5%, pe50%.
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2.2 TAO detector

To test the transferability of the approach for other LS-based detectors, we used the JUNO’s
satellite near detector TAO. Using analogue datasets generated for the TAO detector (∼2M for
training), we performed the same procedures of the feature engineering and feature selection. The
following optimized set of 12 features was used to train the models (sorted by importance):

AccumCharge, 𝜌cc, ht35%, pe90%, pemean, nSiPMs, ht5%,Rcc, pestd, ht75%, pekurtosis, ht15%.

Note that, unlike the set for the JUNO’s detector, charge-related features are more dominant in the
set for TAO. Temporal information becomes less important for TAO due to its smaller size.

3. Results and conclusions

Figure 3 shows the energy reconstruction performance (resolution and bias) of the BDT and
FCDNN models. The hyperparameter optimization of the models is performed and follows the
same procedure as in Ref [3].

1

1.5

2

2.5

3

1 2 3 4 5 6 7 8 9 10
−0.5

0

0.5

BDT
FCDNN

Deposited energy, MeV

R
es

ol
ut

io
n,

 %
B

ia
s, 

%

0.6
0.8

1
1.2
1.4
1.6
1.8

2

1 2 3 4 5 6 7 8 9 10

−0.2
0

0.2

BDT
FCDNN

Deposited energy, MeV

R
es

ol
ut

io
n,

 %
B

ia
s, 

%

Figure 3: Energy reconstruction performance for BDT and FCDNN: a) JUNO detector and b) TAO detector.

In this study, we present an application of machine learning techniques for precise energy
reconstruction for the JUNO detector and its satellite detector TAO. We use two models, BDT and
FCDNNN, trained using aggregated features extracted from simulation data.
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