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1. Introduction

According to the standard model of Big
Bang cosmology and precision cosmologi-

cal measurements [1], matter in our Universe Sagittarius
dwarf galaxy

makes up invisible cold dark matter (CDM) ap-
proximately of 85%. CDM is unknown to date
even though there is strong evidence of the ex-
istence of it [2] and cannot be handled by the
Standard Model of particle physics (SM).

Dark matter in the halo is believed to dom-
. o other dwarf
inate the local dark matter density in light of
the current galaxy formation and evolution as
well as the strong evidence of the dark matter
existence. However, there could be additional
local dark matter contribution from the Sagit-
tarius dwarf tidal stream according to K. Freese
et al. [3], where the Sagittarius dwarf galaxy is
a satellite galaxy of the Milky Way as shown
in Fig. 1. The tidal force from the Milky Way . _
gravitation pulls the dwarf galaxy body so that [RCST RN RNty P e e ORI Ze )
it can form the streams showering onto the Solar

System as also shown in Fig. 1. Since the Sagit- Figure 1: Milky Way and its satellite galaxies.

tarius dwarf galaxy is also believed to contain

its own dark matter halo, the dark matter from the dwarf galaxy also makes up the tidal stream and it
could contribute at most 23% of the local dark matter density [3]. The standard halo model (SHM)
describes the signal shape of dark matter halo in the Milky Way which is indicated by orange lines
in Fig. 2 [4]. The dark matter signal shape by the tidal stream model is taken from Ref. [3] and it is
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Figure 2: Axion dark matter signal shapes for a corresponding frequency of 1.1 GHz following the SHM
(orange lines in the plots) and the tidal stream model (blue line in the left plot). The blue line in the right
plot is the dark matter shape for this work assuming axion dark matter constitutes 100% of the local dark
matter density, where it contributes 23% from the tidal stream model and 77% from the SHM. Only the blue
hatched region in the right plot is considered as the signal region.
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the blue line in the left plot of Fig. 2. Blue line in the right plot of Fig. 2 is the expected dark matter
signal shape in the presence of the tidal stream contribution of 23% on top of the dark matter halo
contribution of 77% and is similar to the model in Ref. [5], but only the blue hatched region in the
right plot of Fig. 2 is taken as the signal region in this work.

2. Axion dark matter and axion haloscope

QCD axion or axion [6] was introduced by

Peccei and Quinn [7] to solve the strong CP Image rejection mixer
{IF=10.7 MHz)

problem in the SM [8] and is predicted to be HEMT amplifier
massive, abundant, and cold and interacts very DAG PG wity % z
weakly with the SM [9]. Such axion proper- ~ ®¥%-10% £ A

ties meet the CDM conditions, hence axion is
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one of the most appreciated CDM candidates gsnerator
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nowadays and referred to as axion dark mat-

Vector

ter. The two most popular benchmark mod- network

analyzer

els are the Kim-Shifman-Vainshtein-Zakharov

(KSVZ) [10] for QCD axions that couple to be- Figure 3: Outline of an axion haloscope, e.g., the
yond the SM heavy quarks, and Dine-Fischler-  CAPP-12TB haloscope.

Srednicki-Zhitnitskii (DFSZ) [11] for those to

the SM quarks and leptons, at tree levels.

A direct axion detection by P. Sikivie [12] uses the axion-photon coupling and is known as the
axion haloscope. Employing a high-quality microwave cavity makes the axion haloscope the most
sensitive axion dark matter searches in the microwave region and Fig. 3 shows a typical outline of
the axion haloscope brought by the CAPP-12TB experiment [13].

3. CAPP-12TB experiment

The CAPP-12TB experiment depicted in Fig. 3 constitutes a superconducting solenoid whose
central magnetic field is 12 T and bore diameter is 320 mm [14], a 36.85 L frequency tunable copper
cylindrical cavity, a heterodyne receiver chain with a Josephson Parametric Amplifier (JPA) [15]
as the first amplifier, and the fast data acquisition system [16]. With help from a dilution fridge
DRS-1000 [17], the experiment lowered and maintained the physical temperatures of the cavity and
the JPA at around 25 mK. CAPP-12TB is the second DFSZ axion dark matter sensitive experiment
following the ADMX [18], where both experiments assumed the DFSZ axion dark matter halo
makes up 100% of the local dark matter density, i.e., pP™% = 0.450 GeV/cm?. The overall

a
operation of the experiment and the relevant measurements can be found in Ref. [13].

4. Tidal stream dark matter search

As a complementary dark matter search, this work searched for dark matter of the tidal
stream [3] around 4.55 peV using the same data used for our SHM dark matter search [13], but
without a dedicated rescan. Assuming DFSZ axion dark matter makes up 100% of the local dark
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matter, the aforementioned dark matter model for this work (the blue hatched region in the right

plot of Fig. 2) results in p?

FSZ 6f 0.114 GeV/cm?®. Table 1 summarizes the comparison between our
previous SHM dark matter search [13] and this tidal stream dark matter search. Our dark matter
model with a signal window of 150 Hz includes contributions from the tidal stream dark matter of

100% and dark matter halo of 2.3%.

SHM search this work
dark matter 100% DFSZ axion, 100% DFSZ axion,
constitution 100% SHM contribution | 23% tidal stream and 77% SHM contributions
signal window 4050 Hz 150 Hz
pDFsSZ 0.450 GeV/cm? 0.114 GeV/cm?

signal power | higher (" higher pPF5%) lower (. lower pPFS%)
background higher lower
fluctuations (.- wider signal window) (" narrower signal window)

cut standard (3.718) tighter without a rescan

Table 1: Comparison between our previous SHM dark matter search [13] and this tidal stream dark matter
search.

5. Results

The results of this work have been recently published [19] and they are summarized in this
proceedings. Data processing followed the usual axion haloscope search analysis method [20],
but applied tighter conditions to exclude all the excess by a least cut, without a rescan. A cut
of 5.4 was applied to exclude all the excess shown in the left plot of Fig. 4. The signal com-
patibility test was done for the most significant excess shown in the left plot of Fig. 4 by the
x” probability. The test statistic and alternative hypothesis are shown in the right plot of Fig. 4
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Figure 4: The left shows the normalized power excess distribution of the normalized grand power spectrum
and the right shows the test statistic (red solid triangles) and alternative hypothesis (blue solid circles) that
were used for the y? probability test. Note that the excesses and errors in the right are dimensionless due to
the rescaling in Ref. [19].
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and the calculated y? probability of O(10™°) implies that they are not compatible with each

other.
In the absence of the axion dark matter sig-
nal, Fig. 5 shows the excluded densities of
axion dark matter of the Sagittarius dwarf
tidal stream at a 90% confidence level (CL).
Dark matter of the tidal streams was ruled
out for densities of p, = 0.184 and > 0.025
GeV/cm® for DFSZ and KSVZ axions, re-
spectively.

6. Summary

CAPP-12TB is the second axion halo-
scope sensitive to DFSZ axion dark matter
halo. The Sagittarius dwarf tidal stream of
axion dark matter was searched for as a com-
plementary to our previous axion dark matter
halo search [13]. Although this is a parasitic
search without a dedicated rescan, the re-
sult is far beyond KSVZ sensitivity for axion
dark matter from the tidal stream for the first
time. This approach could be extended to
the big flow model [21] as done in Ref. [22]
in the near future. In summary, we excluded

The details of the data processing and the associates also can be found in Ref. [19].
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Figure 5: The blue hatched region shows the exclusion
limits for the axion dark matter densities from [13] and the
red solid line shows those achieved by this work, pDF 2 in
left and pXSVZ in right. No results are available around an
axion mass of 4.527 ueV due to mode crossing. The spikes
are less sensitive frequency points with fewer statistics

resulting from the filtering procedure [19].

the densities of p2F5% > 0.184 GeV/em? and pX52Y > 0.025 GeV/cm? over a mass range from 4.51

to 4.59 ueV at a 90% CL.
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