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As the first gravitational wave observatory of the third generation, the future Einstein Telescope
(ET) aims to improve current sensitivities by at least one order of magnitude over the whole de-
tection band. Specifically, in the low-frequency band below 10 Hz, gravity-gradient noise caused
by seismic perturbations is anticipated to be the limiting noise contribution.
Therefore, the underground construction and additional mitigation will be critical for ET to achieve
design sensitivity. The associated challenge is a precise reconstruction of gravity-gradient noise
based on the activity recorded by an array of auxiliary seismic sensors.
We present a first proof-of-concept for a model-independent deep learning approach based on a
stochastic seismic simulation and analytical gravity-gradient noise model. In addition, cancella-
tion performance and sensor noise robustness tests for a spatiotemporal ResNet architecture are
discussed, along with the potential for sensor array optimization.
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1. Introduction

Gravity-gradient noise (GGN) caused by seismic perturbations is anticipated to be the limiting
factor for the sensitivity of third-generation gravitational wave detectors at frequencies below 10 Hz.
For the future Einstein Telescope (ET), the foreseen underground construction alone will not provide
sufficient shielding, and additional cancellation techniques based on auxiliary seismic sensors will
be critical to achieving the design sensitivity. [1–3]
The success of such an approach is crucially dependent on a precise reconstruction of GGN based
on the recordings of the underlying seismic activity. Since this task is equivalent to approximating
a non-linear transfer function between a high dimensional input space with spatial as well as
temporal features and the corresponding time-series of GGN, we propose the use of deep neural
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Figure 1: The proposed deep learning approach for GGN mitigation.

networks as depicted in Fig. 1.
This approach offers potential
advantages over current alter-
natives, such as linear Wiener
Filters [4]. On one hand, it en-
sures model independence by
autonomously learning correla-
tion factors. On the other hand,
it offers the prospect of good
robustness against instrumental self-noise. This paper presents the first proof of concept for the
above-mentioned approach based on a stochastic simulation of seismic activity and the modeling
of the corresponding GGN. Further, performance tests for a spatiotemporal ResNet [5] architecture
are presented along with an investigation of the potential for sensor array optimization.

2. Methodology & Simulation

Investigating the feasibility and potential of the proposed GGN mitigation technique requires
seismic activity data as input to the network and the corresponding GGN as true labels. Until
such data is available, either from R&D test facilities like ETpathfinder [6] or ultimately from ET
measurements with GGN as the dominant noise contribution, testing and development must rely on
simulated datasets. Therefore, we implemented a fast analytical simulation tool that exploits suited
simplifications of the problem to obtain an adequate scenario for initial testing.

Seismic Field Simulation The seismic activity was simulated in a Monte-Carlo manner, i.e.
through the stochastic sampling of multiple seismic pulses that propagate either as longitudinal
p-wave or transversal s-wave modes through a homogenous half-space and together construct the
seismic field. All relevant sampling or geological parameters were chosen to mimic Euregio Meuse-
Rhine (EMR) candidate site conditions, resulting in very good agreement with the GGN estimate
from the site characterization study [2].

The Seismometer Signals (Network Input) Seismic activity recorded by a sensor array is used as
input for the GGN prediction. Starting from the simulated seismic fields, the signals are generated
by superimposing the displacement waveforms with simulated instrumental self-noise. The latter
is generated by coloring white noise with the known noise spectrum of state-of-the-art borehole
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seismometers [7]. With such seismometers, high-precision measurements with a signal-to-noise
ratio (SNR) on the order of 103 should be achievable at the EMR site in principle. [2, 7] However,
an additional scenario with an SNR of O(10) is implemented to test the noise robustness of the
deep learning approach. Since there is no general concept for the positioning of seismometers yet,
a regular 8 × 8 grid in the plane of the ET interferometers with a seismometer spacing of 3 km is
chosen for our first test scenario. However, for follow-up studies, the use of optimized sensor arrays
that reduce drilling costs, e.g., by exploiting the ET cavities, should be investigated.

GGN Strain (Network Labels) The GGN strain in the ET interferometers was finally derived
from the simulated seismic field by modeling a simplified transfer function. Following Harms [8],
the gravitational acceleration was approximated for test masses located at the center of spherical
cavities as

δ󳑞a p/s (󳑞rm, t) = κ p/sGρ0 󳑞ξ p/s (󳑞rm, t)
j1
󰀃
k p/s a

󰀄
k p/s a

(1)

where 󳑞ξ p/s (󳑞rm, t) is the simulated seismic displacement field evaluated at the position of the test
masses. Further, κp = 8π and κs = −4π denote the coupling factors for longitudinal p-waves (bulk
medium) and transversal s-waves (cavity surface), respectively. The gravitational constant is G, ρ0
is the density of the homogeneous half-space, and j1

󰀃
k p/s a

󰀄
is the first spherical Bessel function,

depending on the product of wavenumber kp/s and cavity radius a. Finally, the GGN strain in the
interferometers is determined by simplifying each mirror suspension as a single-stage pendulum
and combining the displacements of the end and beam splitter mirrors.

3. Network Architecture & Noise Mitigation Performance
We treat the mapping of the transfer function between the seismic sensor array and the corre-

sponding GGN as a multivariate time series regression task. The network learns to extract abstract
spatial and temporal features from the seismic recordings and translate them into the corresponding
GGN series. The architecture designed for this purpose is shown in Fig. 2.
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Figure 2: The spatiotemporal ResNet architecture for GGN prediction. A combination of spatial and
temporal convolutional layers embedded in spatio-temporal ReZero blocks [9] (dark-green) is used to extract
increasingly abstract features from the sensor array data. MaxPooling [10] (red) is used to reduce interim
spatial dimensions and improve the learning of latent representations. The spatial convolutions (light-green)
are time-distributed regular convolutions that can be exchanged for Graph convolutions [11] in case of
irregular geometries. Along the time axis, WaveNet [12] inspired dilated temporal convolutions (blue) are
applied. An exponentially increasing dilation factor is used to achieve a large receptive field. The same
temporal layers are applied to finally translate the abstract series of interim features into the GGN prediction.
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The network was trained to predict the GGN strain time series of 4 × 104 independent events,
each caused by 5 seconds of seismic activity. Testing is performed for another 5 × 103 seperate
events and an exemplary waveform is presented below in Fig. 3.

Figure 3: Exemplary display of a predicted GGN waveform (blue) compared to the simulated ground truth
(red) in the top frame. The residuals after cancellation (black) are shown in the bottom frame.

Quantitative performance evaluation was performed by introducing two additional metrics to
the mean square error (MSE), which is also used in training. We computed the Pearson correlation
coefficient rxy to measure the linear correlation between the predicted (y) and the ground truth (x)
GGN waveforms within the test set.

rxy ≡
󳕐

i (xi − x̄) (yi − ȳ)󰁴󳕐
i (xi − x̄)2 󳕐i (yi − ȳ)2

∈ [−1, 1] 󰂃RMS ≡ RMS (x) − RMS (x − y)
RMS (x) (2)

Furthermore, the relative cancellation efficiency 󰂃RMS expresses the mitigation efficiency in terms
of the root mean square (RMS) of the GGN before and after extinction relative to the original noise
level. An evaluation of these metrics over the independent test set is shown in Fig. 4.

Figure 4: Evaluation of GGN mitigation performance. A comparison is shown for two instrumental self-
noise scenarios: In the red scenario, the seismic sensors have a low, but in principle achievable, self-noise
level of SNR = O

󰀃
103󰀄 . In blue, a significantly larger self-noise level of SNR = O (10) is considered for

the input data of the network. In addition, the mean (µ), median (m) and standard deviation (σ) of each
distribution are displayed.

Overall, the low MSE and high linear correlation coefficient demonstrate the ability of the
network to correctly capture the complex transfer function between the seismic field recorded by
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a sensor array and the GGN strain present in the ET interferometers. This is underlined by an
average two-fold mitigation, as indicated by the 󰂃RMS histograms. The circumstance that a much
higher instrumental noise scenario is only accompanied by minor losses in mitigation performance
suggests the robustness of the deep learning approach to instrumental sensor noise.

4. Towards Optimized Seismic Sensor Arrays
A general challenge for GGN mitigation at ET is the positioning of the seismic sensor array.

The goal is to reduce drilling costs while maintaining the highest possible GGN correlation. As
a first step towards deep learning optimized sensor arrays, we analyzed the relative importance of
each sensor in the array based on the idea that important sensors have large gradients [13].

Figure 5: Relative sensor importance analysis. The saliency maps of the sensor’s x-axis and y-axis are
shown on the left and right respectively. The size and color of each dot represent the absolute value and sign
of the gradients of each seismic sensor during GGN prediction. The ET interferometer is drawn in black.

The results in Fig. 5 show that the sensors in the vicinity of the ET end mirrors are of dominant
importance due to the greater spatiotemporal correlation and effect on the strain signal. Further,
both sensor axes show symmetry patterns around the beam-splitter mirrors at x = 0. A mirror
symmetry for the x-axis and anti-correlation for the y-axis indicates that the network internalizes
the geometrical properties of the working principle of the interferometer. The primary motivation
behind this is to demonstrate the potential of using neural networks to gain insight into key sensor
locations and potentially usable symmetries, and ultimately bridge to a seismic sensor array with
optimized efficiency.

5. Conclusion
Cancellation of GGN by a factor of two to three will be critical for achieving ET design

sensitivity. [1, 3] We presented a successful proof-of-concept for a deep learning based approach with
two-fold cancellation and good instrumental self-noise robustness. To further test the capabilities
of this method, more refined simulations with more realistic geologies and GGN models, or real
data from R&D prototypes should be used. The main challenge will be unbiased learning from
data that may vary over several orders of magnitude, with potentially strong underlying frequency
distributions resulting from seismic site characteristics. Next steps include the optimization of the
sensor array and adapting the network to operate on irregular grids encoded in graph structures.
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