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This study focuses on the detection of gravitational waves (GW) in the high frequency regime with
superconducting radio frequency (SRF) cavities. Measurements in the intended frequency range
O(kHz-GHz) could give possible hints to new physics beyond the standard model and insights
into previously hidden early universe phenomena.
The detection principle is based on the transition between two electromagnetic eigenmodes of a
SRF cavity and can be described by a direct and an indirect interaction of gravitational waves with
the electromagnetic field. The indirect coupling coefficients with the cavity shell are precisely
analyzed and additionally the Gertsenshtein effect governing the direct interaction is presented.
In order to improve the description of GW detection, we apply our results to a SRF cavity prototype
built by the MAGO collaboration at INFN Genoa in the early 2000s. Together with FNAL the
Universität Hamburg and DESY revisit research on this detector concept by characterizing its
geometry and the corresponding mechanical and electromagnetic eigenmodes. Combined with
numerical simulations the GW strain sensitivity is calculated in the desired frequency range.
Further improvements on the MAGO cavity prototype parameters indicate that the region of new
physics is accessible.
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1. Introduction

After the first observation of gravitational waves (GW) by the LIGO and VIRGO collaborations
[1] a new field of observational astrophysics gained access to analyse previously partially hidden
phenomena. Especially new strong evidence for a stochastic gravitational wave background in the
nano Hertz regime found in pulsar timing array (PTA) data by the NANOGrav collaboration [2]
excited new interest in GW search in the high frequency regime [3]. Observations of GW with
frequencies beyond 10 kHz would most certainly point to new physics because the standard model
does not predict sources for this frequency regime. Recent studies [4, 5] revisiting the heterodyne
GW experiments with superconducting radio frequency (SRF) cavities show sensitivities reaching
areas of possible new physics. The concept was initially developed theoretically in the late 1970s
[6–8] and experimental efforts in the early 2000s by the MAGO collaboration [9, 10] resulted in
the construction of two prototype cavities. Now, almost 20 years after the project has been stopped,
FNAL, INFN Genoa, DESY and the Universität Hamburg reactivate the project and collaborate on
a proof of concept study with one of the prototype cavities built by the MAGO collaboration.

The fundamental detection principle is based on two nearly degenerate electromagnetic eigen-
modes of the coupled microwave cavity system. The energetically lower eigenmode is excited by a
narrow external oscillator (pump mode) to store RF energy inside the cavity. A sensitive readout
system is coupled to the other energetically higher eigenmode and measures the electromagnetic
field spectral power around the carrier frequency. The passage of a GW can induce photon transi-
tions from the pump mode to the signal mode. The maximal energy transfer is reached when the
GW frequency is on resonance with the frequency difference of the pump and signal modes. Thus
heterodyne SRF cavity experiments have the ability to scan over a large GW frequency range reach-
ing from 1 kHz to a few GHz. In the superconducting state the cavity has very high electromagnetic
quality factors (𝑄 ∼ 1010 −1012) which are necessary to resolve the frequency difference in the kHz
regime.

The interaction of a GW with the EM field of the pump mode can be described by two
independent phenomena. A direct coupling via the Gertsenshtein effect [11, 12] dominant only for
high GW frequencies above 1 GHz. It will not be of relevance for the existing prototype, but it is
introduced for completeness. The indirect interaction of a GW with the detector displaces the cavity
shell and thus induces an overlap of pump and signal mode also causing energy to be transferred
to the signal mode. All calculations in this analysis are done in the well known long-wavelength
approximation, where the GW wavelength is much longer than than the detectors size.

2. The Gertsenshtein Effect

In the 1960s Mikhail E. Gertsenshtein discovered that an electromagnetic wave with 𝜔em

propagating through a static transverse magnetic field can induce a GW with the same frequency
[11]. This interaction also works in the opposite direction, a GW with 𝜔𝑔 propagating through
an electromagnetic field induces photons of the frequency 𝜔 = 𝜔𝑔 + 𝜔𝑒𝑚. In the framework of
linearized theory of gravity, where GW are usually derived, the general metric can be decomposed
in a minkowskian and a perturbative part, i.e. 𝑔𝜇𝜈 = 𝜂𝜇𝜈 + ℎ𝜇𝜈 . We assume that the perturbation,
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also known as the GW strain tensor, is small i.e. |ℎ𝜇𝜈 | ≪ 1 and |𝜕𝛼ℎ𝜇𝜈 | ≪ 1. Throughout all
derivations we use the convention (−, +, +, +) for 𝜂𝜇𝜈 .

The GW interaction with electromagnetic fields is derived from the Einstein-Maxwell action,
with 𝑗𝜇 = 0 in vacuum. The strain ℎ𝜇𝜈 induces an additional effective current in the modified
Maxwell equations

𝑗
𝜇

eff = 𝜕𝜈 (
1
2
ℎ𝛼

𝛼𝐹
𝜇𝜈 + ℎ𝜈𝛼𝐹

𝛼𝜇 − ℎ
𝜇
𝛼𝐹

𝛼𝜈), (1)

which, however, does not transform covariantly like a four-vector [5, 13]. Thus a fixed frame of
reference must be chosen to evaluate the strain, where the most convenient choice turns out to
be the proper detector (PD) frame [13]. However, GW have the simplest form in the transverse-
traceless (TT) gauge and therefore we assume monochromatic GW of frequency 𝜔𝑔 propagating in
z-direction. They can be express in the TT-gauge as

ℎ𝑇𝑇𝑖 𝑗,𝑧 (𝑡) =
©­­«
ℎ+ ℎ× 0
ℎ× −ℎ+ 0
0 0 0

ª®®¬ 𝑒𝑖𝜔𝑔𝑡 , (2)

where ℎ× and ℎ+ denote the polarization states of GW. In the long-wavelength regime the strain
in the PD has only one non-zero component which is related to the TT-gauge representation via
ℎ𝑃𝐷

00 = 1
2
¥ℎ𝑇𝑇
𝑖 𝑗

(𝑔)𝑥𝑖𝑥 𝑗 , with 𝑔 denoting the geodesic of the detector. From the modified Maxwell
equations the induced current density ®𝑗eff can be derived in the PD frame and has the form

®𝑗eff = −1
2
𝜕𝑡 (ℎ00 ®𝐸0) −

1
2
∇ × (ℎ00 ®𝐵0), (3)

where ®𝐸0 and ®𝐵0 are the electromagnetic fields of the pump mode in the cavity. From the effective
current the direct coupling coefficients 𝜂𝐸01 and 𝜂𝐵01 can be derived (see Eq.18) in chapter 4.

3. Cavity Wall Deformation

The indirect interaction of a GW deforms the cavity walls and changes the boundary conditions
for the electromagnetic field modes. The cavity deformation can be derived from classical elastic
theory and has been done in [10, 15]. In general, the deformation due to an external force density
®𝑓 (𝑡, ®𝑥) is explained by the equations of motion for isotropic elastic solids

®𝑓 (𝑡, ®𝑥) = 𝜌(®𝑥) 𝜕
2 ®𝑢
𝜕𝑡2

− 𝜇Δ®𝑢 − (𝜆 + 𝜇) ®∇( ®∇ · ®𝑢). (4)

The parameters 𝜆 and 𝜇 are the first and second Lamé coefficients of the material and 𝜌(®𝑥) the
material density. With a standard separation ansatz ®𝑢(𝑡, ®𝑥) = ∑

𝑙
®𝜉𝑙 (®𝑥)𝑞𝑙 (𝑡) the equations of motion

for the 𝑞𝑙 (𝑡) can be derived
¥𝑞𝑙 (𝑡) + 𝜔2

𝑙 𝑞𝑙 (𝑡) = 𝑓𝑙 (𝑡)/𝑀. (5)

In case of passing GW, ®𝑓 (𝑡, ®𝑥) is a tidal force density derived from the equation of geodesic deviation
[16]

®𝑓 (𝑡, ®𝑥) = −𝜌(®𝑥)𝑅0𝑖0 𝑗 (𝑡)𝑥 𝑗 ®𝑒𝑖 , (6)

where 𝑅0𝑖0 𝑗 denotes the Riemann curvature tensor.
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Figure 1: Due to the symmetry of the MAGO detector prototype, mechanical quadrupole modes are excited
when GW come from certain directions. This can be seen in the above plots where on the left (right) the
normalized coupling coefficient are shown for the pure polarization state ℎ× (ℎ+) of monochromatic GW from
arbitrary directions. The GW propagates along the coupling tube of the cavity (see figure 2) if Declination
and Right Ascention are zero. Mode 𝑓32 = 3.96 kHz refers to the lowest mechanical quadrupole mode of the
ideal MAGO prototype geometry. These simulations were done with COMSOL multiphysics.

3.1 Coupling coefficient GW-mechanical Modes

The MAGO cavity geometry, with the main features shown in figure 2, was developed by
the MAGO collaboration [9] and is based on two orthogonal oriented elliptical cells to induce the
intended electromagnetic field polarization for GW detection [13]. The central tuning cell was
designed to be mechanically deformed and tune the frequency splitting in range 4 kHz ≤ 𝜔1 −𝜔0 ≤
10 kHz. The z axis points along the coupling tube between the two elliptical cells.

For monochromatic GW in z-direction we can plug in Eq.6 the expression of the Riemann tensor
in the TT-gauge [18], it is invariant under gauge transformations. With the generalised definition of
a force density 𝑓𝑙 (𝑡) :=

∫
𝑉
𝑑3𝑥 ®𝑓 (𝑡, ®𝑥) ®𝜉𝑙 (®𝑥) for mechanical mode 𝑙 with ®𝜉𝑙 (®𝑥) a normalized vector

field for the deformation of the cavity shell, we derive from Eq.6

𝑓𝑙 (𝑡) = −
𝜔2
𝑔

2
𝑀cav𝑉

1/3
cav (ℎ+Γ𝑙

+ + ℎ×Γ
𝑙
×)𝑒𝑖𝜔𝑔𝑡 , (7)

where 𝑀cav denotes the cavity mass, 𝑉cav the cavity volume and we have defined the dimensionless
coupling coefficients Γ𝑙

+ and Γ𝑙
× that express the interaction strength of GW with the 𝑙 th mechanical

mode. They are defined as

Γ𝑙
+ := 𝑉

−1/3
cav 𝑀−1

cav

∫
𝑉cav

𝑑3𝑥𝜌(®𝑥)
(
𝑥 ®𝜉l,x(®𝑥) − 𝑦 ®𝜉l,y(®𝑥)

)
, (8)

Γ𝑙
× := 𝑉

−1/3
cav 𝑀−1

cav

∫
𝑉cav

𝑑3𝑥𝜌(®𝑥)
(
𝑥 ®𝜉l,y(®𝑥) + 𝑦 ®𝜉l,x(®𝑥)

)
. (9)

From numerical calculations with COMSOL with the MAGO geometry we found Γ×, Γ+ to be of
order O(10−1). In figure 1 the couplings are shown for GW propagating from arbitrary directions
of space, i.e. ℎ𝑇𝑇

𝑖 𝑗
(𝛼, 𝛽) = R(𝛼, 𝛽)ℎ𝑇𝑇

𝑖 𝑗,𝑧
R𝑇 (𝛼, 𝛽) with R(𝛼, 𝛽) = R𝑥 (𝛼) · R𝑦 (𝛽), a rotation around

x- and y-axis.

4



P
o
S
(
E
P
S
-
H
E
P
2
0
2
3
)
0
7
7

A SRF Cavity for Gravitational Wave Detection Lars Fischer

(a) 𝑇𝐸011 mode at 𝑓em = 2.103 GHz (b) 𝑇𝐸111 mode at 𝑓em = 2.693 GHz

Figure 2: Depending on the pump and signal mode geometry, the coupling to the mechanical vibrations of
the cavity shell changes. The MAGO collaboration found a mode at 𝑓em = 2.1 GHz to have the strongest
coupling and for comparison a mode at 𝑓em = 2.7 GHz with similar field distribution has also been tested.
For both modes the normalized electric field normal is shown in the yz-plane (left) and xy-plane (right). Red
corresponds to electric field maxima and blue to low field values.

3.2 Coupling coefficient Mechanical-EM Mode

The electromagnetic field inside the evacuated cavity follow the wave equations

Δ ®𝐸 =
1
𝑐2

𝜕2 ®𝐸
𝜕𝑡2

, Δ ®𝐵 =
1
𝑐2

𝜕2 ®𝐵
𝜕𝑡2

, (10)

where the general solutions can be decomposed in a time and spatial dependent part

®𝐸 (𝑡, ®𝑥) =
∑︁
𝑛

𝑒𝑛 (𝑡) ®𝐸 (®𝑥), ®𝐵(𝑡, ®𝑥) =
∑︁
𝑛

𝑏𝑛 (𝑡) ®𝐵(®𝑥). (11)

In order to express the changing boundary conditions due to the vibrating cavity shell, cavity
perturbation theory [17] is applied to first order with 𝑒′𝑛 (𝑡) = 𝑒𝑛 (𝑡) + 𝜎𝑒

(1)
𝑛 (𝑡) + O(𝜎2) and

𝑏′𝑛 (𝑡) = 𝑏𝑛 (𝑡) + 𝜎𝑏
(1)
𝑛 (𝑡) + O(𝜎2), where 𝑒𝑛 (𝑡) and 𝑏𝑛 (𝑡) are the time dependent decomposition,

Eq.11. The derivation shown in [5] yields the coupling coefficients between the mechanical
vibrations of the cavity boundaries and the electromagnetic field

𝐶𝑙
01 =

𝑉
1/3
cav

2
√
𝑈0𝑈1

∫
𝜕𝑉cav

𝑑 ®𝑆 · ®𝜉𝑙 (®𝑥)
[ 1
𝜇0

®𝐵0(®𝑥) ®𝐵1(®𝑥) − 𝜖0 ®𝐸0(®𝑥) ®𝐸1(®𝑥)
]
, (12)

where ®𝐵0(®𝑥), ®𝐸0(®𝑥) and ®𝐵1(®𝑥), ®𝐸1(®𝑥) correspond to the pump and signal mode respectively with
𝑈0 and 𝑈1 the energy stored in each mode.

For the convention of the 𝑇𝐸𝑙𝑚𝑛 cavity eigenmodes we follow [19], with 2𝑙 periods in 𝜙

direction, 𝑚 half periods along z and 𝑛 half periods in r direction for cylindrical coordinates with
the z axis aligned with the long semi-axis of the elliptical cavities. The MAGO collaboration [9]
found that the coupling to the 𝑇𝐸011 mode maximizes the coefficient in Eq.12. For comparison
a 𝑇𝐸111 mode with similar field distribution has also been investigated (inspired by ref. [13])
and both electromagnetic mode fields are shown in figure 2. To evaluate which mode is suited
best for the indirect detection, we multiply the maximum value of the GW mechanical coupling
coefficients, Eq.8, with the numerical value for the mechanical EM overlap factor, Eq.12. The values
for mechanical eigenmodes between 0.5 kHz and 12 kHz, where the lowest mechanical quadrupole
mode is expected, are displayed in figure 3 for the𝑇𝐸011 and the𝑇𝐸111 mode. The strongest coupling

5
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Figure 3: The indirect GW coupling to the output signal is characterized by the product of the coefficients
Γ𝑙
×,+ and 𝐶𝑙

01. First the passing GW displaces the cavity shell and excites mechanical eigenmodes of the
cavity which is described by Γ𝑙

×,+. The mechanical vibrations then induce a mode overlap of the pump and
signal mode, the energy transfer efficiency is described by 𝐶𝑙

01. For most of the analysed GW frequency
spectrum this product must be maximised to get the highest GW sensitivity.

occurs for a mechanical mode with 𝑓mech = 3.96 kHz for both the 𝑇𝐸011 and 𝑇𝐸111 mode. However,
the coupling at this frequency is dominated by the 𝑇𝐸011 mode. The 𝑇𝐸011 modes symmetric and
anti-symmetric states are nearly degenerate and will be thus used as pump and signal mode for the
detector system.

4. The Equations of Motion

A detailed derivation of the equations of motion including the Gertsenshtein effect can be
found in [5], we will only give a brief outline here. In order to take into account the direct and
indirect interactions of GW with the heterodyne SRF cavity, electromagnetic and mechanical parts
are included in the Lagrangian of the full system,

L =

∫
𝑉cav

𝑑𝑉

(
− 1

4
𝐹𝜇𝜈𝐹

𝜇𝜈 − 1
2
𝑗
𝜇

eff𝐴𝜇

)
+

∑︁ (1
2
𝑀 ¤𝑞2

𝑙 (𝑡) −
1
2
𝑀𝜔2

𝑙 𝑞
2
𝑙 (𝑡) + 𝑞𝑙 (𝑡) 𝑓𝑙 (𝑡)

)
. (13)

The equations of motion can be derived for the electromagnetic and mechanical (where we assume
only one contributing mechanical mode) dynamics. If we include damping terms and an external
oscillator connected to the pump mode with power leakage 𝜖 to the signal mode, we find from the
electromagnetic part of the Lagrangian Eq.13 by adding dissipative terms and an external oscillator
𝑏𝑑 driving the pump mode

¥𝑏𝑖 +
𝜔𝑖

𝑄𝑖

¤𝑏𝑖 + 𝜔2
𝑖 𝑏𝑖 = 𝜔2

𝑖𝑉
−1/3
𝑐𝑎𝑣 𝑞𝑙

(
𝐶𝑙
𝑖𝑖𝑏𝑖 +

√︄
𝑈 𝑗

𝑈𝑖

𝐶𝑙
𝑖 𝑗𝑏 𝑗

)
+ 𝐽𝑖 +

𝜔𝑖

𝑄𝑖

√︂
𝑈𝑑

𝑈𝑖

¤𝑏𝑑 ×
{

1, 𝑖 = 0
𝜖, 𝑖 = 1

. (14)

Here 𝑖 = 0 refers to the pump mode and 𝑖 = 1 to the signal mode, the 𝑄𝑖 are the electromagnetic
quality factors of the eigenmodes and 𝑈𝑑 the average energy induced by the external drive. The
Gertsenshtein current enters as a projected current 𝐽𝑖 (see ref. [5] for further details).

From the mechanical part of the Lagrangian in Eq.13 the mechanical EoM is with an additional
damping term given by

¥𝑞𝑙 (𝑡) +
𝜔𝑙

𝑄𝑙

¤𝑞𝑙 (𝑡) + 𝜔2
𝑙 𝑞𝑙 (𝑡) =

1
𝑀cav

( 𝑓𝑙 (𝑡) + 𝑓 𝑏𝑎𝑙 (𝑡)) (15)

6
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with the simplified field back-action

𝑓 𝑏𝑎𝑙 (𝑡) = 2𝑉−1/3
𝑐𝑎𝑣

√︁
𝑈0𝑈1𝐶

𝑙
01𝑏0(𝑡)𝑏1(𝑡), (16)

which sources an additional displacement of the cavity shell due to the electromagnetic fields in the
cavity. This is also known as Lorentz force detuning. This additional contribution has dissipative
characteristic and generally attenuates the mechanical oscillations excited by GW.

4.1 Signal Power

In general, the system of coupled differential equations, Eq.14 and Eq.15, can only be solved
numerically. However, if we assume a monochromatic GW propagating in z-direction in the long-
wavelength regime, i.e. 𝜆𝑔 ≫ 𝐿cav, and with small mechanical 𝑞𝑙 (𝑡) and signal 𝑏1(𝑡) amplitudes,
the EoMs can be solved analytically. This yields the total integrated signal power [5]

𝑃𝑠𝑖𝑔 =
𝜔1
𝑄cpl

𝜔4
𝑔𝑈0

���12 𝜔2
1𝐶

𝑙
01(ℎ+Γ

𝑙
+ + ℎ×Γ𝑙

×)
𝛽1𝛽𝑙 − 𝛾1𝛾𝑙

−
𝛽𝑙𝐻 (𝜅1𝜂

𝐸
01 + 𝜆1𝜂

𝐵
01)

𝛽1𝛽𝑙 − 𝛾1𝛾𝑙

���2 (17)

with the coefficients 𝜅𝑛 := − 𝜔𝑛

8𝑐2 (𝜔0 +𝜔𝑔) and 𝜆𝑛 := 𝜔2
𝑛

8𝑐2 in front of the dimensionless Gertsenshtein
coupling coefficients 𝜂𝐸01, 𝜂𝐵01. The direct coupling coefficients are defined as [5]

𝜂𝐸01 :=
1

𝐻
√
𝑈0𝑈1

∫
𝑉cav

𝑑3𝐻0(®𝑥)𝜖0 ®𝐸0(®𝑥) ®𝐸1(®𝑥),

𝜂𝐵01 :=
1

𝐻
√
𝑈0𝑈1

∫
𝑉cav

𝑑3𝐻0(®𝑥)
1
𝜇0

®𝐵0(®𝑥) ®𝐵1(®𝑥)
(18)

with 𝐻0(®𝑥) = ℎ+(𝑥2 − 𝑦2) + 2ℎ×𝑥𝑦. The quality factors 𝑄cpl for the coupling of the readout system
and the total quality factor of the system are related via 𝑄−1

1 = 𝑄−1
cpl +𝑄

−1
int , with the internal quality

factor 𝑄int of the cavity defined without the readout system. The resonance terms can be expressed
as 𝛽1 := 𝜔2

1 − (𝜔0 + 𝜔𝑔)2 + 𝑖
𝜔1
𝑄1

(𝜔0 + 𝜔𝑔) and 𝛽𝑙 := 𝜔2
𝑙
− 𝜔2

𝑔 + 𝑖𝜔𝑔
𝜔𝑙

𝑄𝑙
, with the mechanical

quality factor 𝑄𝑙. In contrast to recent studies this result includes an additional damping factor
𝛾1𝛾𝑙 =

1
𝑀
𝑉

−2/3
cav 𝑈0(𝜔1𝐶

𝑙
01)

2 arising from the back-action of the em fields. The strongest attenuation
occurs if the GW frequency is close to the considered mechanical mode with frequency 𝜔𝑙.

This has the effect that the highest signal power induced by a passing GW is usually not reached
if the coupling coefficient 𝐶𝑙

01 is of order O(1), but rather of order O(10−5) in case the GW is on
resonance with 𝜔𝑙. In figure 4 the effect of the damping term 𝛾1𝛾𝑙 on the signal power is shown
with respect to the overlap factor 𝐶𝑙

01. Additionally, we plot a theoretical strain sensitivity for the
ideal MAGO detector prototype which includes noise models derived in ref. [14]. This includes
mechanical noise, thermal mechanical noise, thermal electromagnetic, amplifier and oscillator
phase noise as independent noise sources. To compute the sensitivity in figure 4 (b) we assume a
temperature of 1.8 K and include all simulated mechanical eigenfrequencies shown in figure 3 with
similar quality factors 𝑄l ∼ 106. For the EM quality factors we use 𝑄𝑖 ∼ 1010, for the coupling
quality factor in a scanning experiment 𝑄cpl,s ∼ 1010 and in a broadband experiment 𝑄cpl,b ∼ 105.
We assume further an integration time of 𝑡int ∼ 103 s and an average wall displacement of 0.1 nm.

A general advantage of this experimental approach is the possibility to operate in a scanning
or broadband mode: A scanning experimental configuration assumes the detection of a GW on
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(a) Signal power with damping (b) Ideal MAGO detector sensitivity

Figure 4: (a) The signal power is not maximized for all GW frequencies with a coupling of order O(1)
when the damping term is included in the total signal power, but rather if the coupling is of order O(10−5)
for GW on resonance. (b) MAGO detector sensitivity calculated for a scanning and a broadband experiment,
including the main noise sources: Mechanical, thermal em, thermal mechanical, amplifier and oscillator
phase noise.

resonance with the frequency difference of the pump and signal mode, i.e. 𝜔1 = 𝜔0 + 𝜔𝑔, where a
number of different detectors are needed to span a large frequency range; in a broadband mode the
experiment operates at a single fixed frequency difference of the electromagnetic modes and detects
GW mainly off resonance such that a single detector could cover a large range of frequencies. A
sensitivity comparison is shown in figure 4 (b) and shows that the area of physical interest is in
reach for an SRF cavity detector.

5. Outlook

The future of this project is exciting and the goal is to push the strain sensitivity limits further,
where theory and experiment go hand-in-hand. Current tests at DESY include measurements of
the mechanical and radio frequency modes in a warm environment and first cold tests are planned
at the FNAL. Further efforts will aim for the development of a low noise readout system at the
desired RF frequency as well as a suitable cryogenic and suspension system. We point out that the
general experimental concept reaches still expandable sensitivities in a broadband operation, but
quite promising sensitivities in a wide GW frequency range from 10 kHz up to 1 GHz in a scanning
experimental setup.
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