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In this work, we examine the constraints imposed on the doublet left-right symmetric model
(DLRSM) by analyzing Higgs data from LHC. Specifically, we investigate the key parameters of
the model, denoted as the ratios 𝑟 = 𝜅2/𝜅1 and 𝑤 = 𝑣𝐿/𝜅1. While previous research assumed
these ratios to be very small, we find that there is no lower bound on either 𝑟 or 𝑤 and the upper
bound is set by the perturbative requirement of Yukawa couplings . Notably, the Yukawa coupling
of the bottom quark to the lightest CP-even scalar not only discourages the selection of small 𝑟
values but also implies a preference for 𝑤 values approximately around 𝑂 (1). These values are
also favored by the indirect constraint on the mass of heavy CP-even scalars.
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1. Introduction

Left-right symmetric models, based on the symmetry group 𝑆𝑈 (2)𝐿×𝑆𝑈 (2)𝑅×𝑈 (1)B−L [1, 2],
are promising for physics beyond the standard model (SM). This model’s scalar sector necessitates at
least three distinct Higgs multiplets. Fermion mass generation relies on a scalar bidoublet Φ, which
is a doublet under both 𝑆𝑈 (2)𝐿 and 𝑆𝑈 (2)𝑅. The other two scalars can be either 𝑆𝑈 (2) triplets or
doublets. In doublet left-right symmetric models (DLRSM), these two scalars are referred to as 𝜒𝐿

(doublet under 𝑆𝑈 (2)𝐿 and singlet under 𝑆𝑈 (2)𝑅) and 𝜒𝑅 (singlet under 𝑆𝑈 (2)𝐿 and doublet under
𝑆𝑈 (2)𝑅). The vev (vacuum expectation value) 𝑣𝑅 of 𝜒𝑅 breaks the symmetry to 𝑆𝑈 (2)𝐿 ×𝑈 (1)𝑌
and the vevs 𝜅1 and 𝜅2 of Φ and 𝑣𝐿 of 𝜒𝐿 lead to electroweak symmetry breaking (EWSB). The
EWSB vevs obey the constraint

√︃
𝜅2

1 + 𝜅2
2 + 𝑣2

𝐿
= 𝑣EW = 246 GeV. For later convenience, we define

the two ratios 𝑟 = 𝜅2/𝜅1 and 𝑤 = 𝑣𝐿/𝜅1.
Most models based on left-right symmetry assume that EWSB occurs primarily through 𝜅1,

implying 𝑟, 𝑤 ≪ 1 . In this Proceeding, we investigate the constraints imposed on 𝑟 and 𝑤 by the
precision Higgs data from LHC.

2. Scalar potential

All the particle content and other notations of the model can be found in ref. [3]. The most
general, renormalizable Higgs potential involving Φ, 𝜒𝐿 and 𝜒𝑅 fields is given by

𝑉 = 𝑉2 +𝑉3 +𝑉4,

𝑉2 = −𝜇2
1Tr(Φ†Φ) − 𝜇2

2 [Tr(Φ̃Φ†) + Tr(Φ̃†Φ)] − 𝜇2
3 [𝜒†

𝐿
𝜒𝐿 + 𝜒

†
𝑅
𝜒𝑅] ,

𝑉3 = 𝜇4 [𝜒†
𝐿
Φ𝜒𝑅 + 𝜒

†
𝑅
Φ†𝜒𝐿] + 𝜇5 [𝜒†

𝐿
Φ̃𝜒𝑅 + 𝜒

†
𝑅
Φ̃†𝜒𝐿] ,

𝑉4 = 𝜆1Tr(Φ†Φ)2 + 𝜆2 [Tr(Φ̃Φ†)2 + Tr(Φ̃†Φ)2] + 𝜆3Tr(Φ̃Φ†) Tr(Φ̃†Φ)
+𝜆4Tr(Φ†Φ) [Tr(Φ̃Φ†) + Tr(Φ̃†Φ)] + 𝜌1 [(𝜒†

𝐿
𝜒𝐿)2 + (𝜒†

𝑅
𝜒𝑅)2] + 𝜌2 𝜒

†
𝐿
𝜒𝐿𝜒

†
𝑅
𝜒𝑅

+𝛼1Tr(Φ†Φ) [𝜒†
𝐿
𝜒𝐿 + 𝜒

†
𝑅
𝜒𝑅] +

{
𝛼2 [𝜒†

𝐿
𝜒𝐿Tr(Φ̃Φ†) + 𝜒

†
𝑅
𝜒𝑅Tr(Φ̃†Φ)] + h.c.

}
+𝛼3 [𝜒†

𝐿
ΦΦ†𝜒𝐿 + 𝜒

†
𝑅
Φ†Φ𝜒𝑅] + 𝛼4 [𝜒†

𝐿
Φ̃Φ̃†𝜒𝐿 + 𝜒

†
𝑅
Φ̃†Φ̃𝜒𝑅] .

Here the potential is made CP-conserving by ensuring that all the couplings are real through suitable
field redefinitions.

The conditions which minimize the potential are
𝜕𝑉

𝜕𝜅1
=

𝜕𝑉

𝜕𝜅2
=

𝜕𝑉

𝜕𝑣𝐿
=

𝜕𝑉

𝜕𝑣𝑅
= 0 . (1)

We employ these conditions to replace the four mass parameters 𝜇2
1, 𝜇

2
2, 𝜇

2
3, and 𝜇5 in terms of the

vacuum expectation values (vev) and quartic couplings. Thus the parameters characterizing the
scalar sector of the DLRSM are as follows: {𝜆1,2,3,4, 𝛼1,2,3,4, 𝜌1,2, 𝜇4, 𝑟, 𝑤, 𝑣𝑅}.

3. CP-even neutral scalars

The gauge and physical bases for the CP-even neutral scalars are 𝑋 = (𝜙0
1𝑟 , 𝜙

0
2𝑟 , 𝜒

0
𝐿𝑟
, 𝜒0

𝑅𝑟
) and

𝑋ph = (ℎ, 𝐻1, 𝐻2, 𝐻3) respectively and they are related by

𝑋ph = 𝑈𝑇𝑋, 𝑈𝑇𝑀2𝑈 = 𝑀2 diag . (2)
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Here ℎ is the lightest CP-even scalar, with mass of the order of 𝑣EW, whose properties will be very
similar to those of SM Higgs boson and 𝐻𝑖 (𝑖 = 1, 2, 3) are heavier scalars with masses of the order
of 𝑣𝑅. We construct the mass matrix 𝑀2 for scalars using the above potential in the gauge basis.
Utilizing non-degenerate perturbation theory, we determine the smallest eigenvalue of the matrix
𝑀2, denoted as the Higgs boson mass 𝑚2

ℎ
, as follows:

𝑚2
ℎ =

𝜅2
1

2(1 + 𝑟2 + 𝑤2)
×(

4
(
𝜆1(𝑟2 + 1)2 + 4𝑟 (𝜆4(𝑟2 + 1) + 𝑟𝜆23) + 𝑤2(𝛼124 + 𝑟2(𝛼1 + 𝛼3) + 𝛼2𝑟) + 𝜌1𝑤

4
)

− 1
𝜌1

(𝛼124 + 𝑟2(𝛼1 + 𝛼3) + 𝛼2𝑟 + 2𝜌1𝑤
2)2

)
, (3)

where 𝛼124 = 𝛼1 + 𝑟𝛼2 + 𝛼4. The positivity of the non-zero eigenvalues of mass matrix leads to the
following constraints on the quartic couplings

2𝜌12 = 𝜌2 − 2𝜌1 > 0 and 𝛼34 = 𝛼3 − 𝛼4 > 0 .

We set 𝑣𝑅 = 20 TeV in our numerical work in order to satisfy the experimental lower bound on heavy
gauge bosons mass (𝑚𝑍2 and 𝑚𝑊2), which also ensures that 𝜅2

1, 𝜅
2
2, 𝑣

2
𝐿
≪ 𝑣2

𝑅
. We now calculate

the coupling of lightest scalar ℎ to gauge bosons and to third generation quarks of this model and
express it in terms of coupling multipliers.

𝜅𝑊 =
𝑐ℎ𝑊1𝑊1

𝑐SM
ℎ𝑊𝑊

=
1
𝑘

(
(1 − 2𝑐 𝜉 𝑠𝜉 𝑟)𝑈11 + (𝑟 − 2𝑐 𝜉 𝑠𝜉 )𝑈21 + 𝑤𝑐2

𝜉𝑈31 +
𝑣𝑅

𝜅1
𝑠2
𝜉𝑈41

)
,

𝜅𝑍 =
𝑐ℎ𝑍1𝑍1

𝑐SM
ℎ𝑍𝑍

=
𝑔2(𝑔2 + 2𝑔2

𝐵𝐿
)

(𝑔2 + 𝑔′2) (𝑔2 + 𝑔2
𝐵𝐿

)
1
𝑘
(𝑈11 + 𝑟𝑈21 + 𝑤𝑈31) .

𝜅𝑡 (𝑏) =
𝑐ℎ𝑡𝑡 (ℎ𝑏𝑏)

𝑐SM
ℎ𝑡𝑡 (ℎ𝑏𝑏)

=
𝑘

𝑚𝑡 (𝑏) (1 − 𝑟2)

(
(𝑈11 − 𝑟𝑈21)𝑚𝑡 (𝑏) + (𝑈21 − 𝑟𝑈11) (𝑉CKM

𝐿 �̂�𝑑 (𝑢) 𝑉
CKM†
𝑅

)33

)
.

Here 𝑘 =
√

1 + 𝑟2 + 𝑤2 and 𝜉 is the mixing angle between𝑊𝐿,𝑅. 𝑔′ and 𝑔𝐵𝐿 are the gauge coupling
of 𝑈 (1)𝑌 and 𝑈 (1)𝐵−𝐿 respectively. In this work we assume manifest LR symmetry in the gauge
sector which means the gauge couplings associated with 𝑆𝑈 (2)𝐿 (𝑅) are equal i.e. 𝑔𝐿 = 𝑔𝑅 = 𝑔.
In this model, it is also possible to compute the triple Higgs (ℎ3) vertex and represent it using the
coupling parameter 𝜅ℎ .

4. Theoretical constraints

All the theoretical constraints on DLRSM including requirements for perturbativity in quartic
and Yukawa couplings, maintenance of perturbative unitarity in gauge boson scattering, and criteria
for boundedness of the scalar potential from below can be found here[3, 4]. The requirement of
perturbativity of the Yukawa couplings of quarks to Higgs bidoublet leads to strong upper bounds
𝑟 ≲ 0.8, and 𝑤 ≲ 3.5. The ratio 𝑥 = 𝜆2/𝜆4 is constrained by the boundedness of the scalar potential,
leading to the inequality: 8𝑥(1 − 𝑥) > 0. This inequality implies that for positive values of x, the
range is restricted to 0.25 ≤ 𝑥 ≤ 0.85.
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5. Constraints from Higgs data

We want to examine how the Higgs data restrict the possible values of the parameters 𝑟 and
𝑤. We have ten quartic couplings that can vary independently, as long as they satisfy the above
mentioned inequalities. However, to better understand how the data influences the values of 𝑟 and
𝑤, we fix the ten quartic couplings using the following relations

{𝜆1 = 𝜆3 = 𝜆4 = 𝜆0, 𝑥 =
𝜆2
𝜆4

, 𝛼1 = 𝛼2 = 𝛼4 = 𝛼0, 𝑝 =
𝛼3
𝛼4

− 1, 𝑞 =
𝜌2

2𝜌1
− 1}.

We refer to this set of parameters {𝜆0, 𝛼0, 𝜌1, 𝑥, 𝑝, 𝑞, 𝑟, 𝑤, 𝑣𝑅} as the ‘simple’ basis as opposed to
the ‘generic’ basis where all the 𝜆s and all the 𝛼s are taken to be independent. In our calculations,
we set 𝑣𝑅 to a constant value of 20 TeV. For specific values of 𝛼0, 𝜌1, 𝑥, 𝑝, and 𝑞, we solve equation
(3) to determine a solution for 𝜆0, denoted as Λ0. To maximize the number of solutions that satisfy
the 𝑚ℎ constraint, we randomly select values for 𝜆0 within the restricted range: 𝜆0 = (1 + 𝑦)Λ0
where y ranges from -0.1 to 0.1. Random values for 𝑥 and 𝑦 are selected on a linear scale within
their respective ranges, while random values for the other parameters are chosen on a logarithmic
scale, in the ranges specified below:

𝛼1,2,4 ≡ 𝛼0 ∈ [10−3, 4𝜋], 𝜌1 ∈ [0.1, 8𝜋/3], 𝜇4 ∈ [10−2, 1] × 𝑣𝑅 . (4)

We fix the ratio 𝑞 at 𝑞 = 1 and examine four distinct values of 𝑝, ranging from 0.02 to 5. At each
random point, we compute the numerical values of the lightest Higgs mass 𝑚ℎ and the coupling
parameters 𝜅𝑊 , 𝜅𝑍 , 𝜅ℎ, 𝜅𝑡 , and 𝜅𝑏 . These values are required to align with the corresponding
experimentally measured values listed in reference [4]. The results of our calculation are displayed
in fig. 1. As the value of 𝑝 increases, there is a preference for larger values of 𝑤 as long as 𝑝 ≤ 0.1,
though a few points with low 𝑟 and low 𝑤 are allowed. Only for 𝑝 ≥ 1, the distribution of allowed
points becomes uniform over the entire range of 𝑟 and 𝑤. Consequently, to maintain the standard
assumption that 𝑣𝐿 and 𝜅2 are significantly smaller than 𝜅1, 𝛼3 must be at least twice as large as the
other 𝛼 values.

Flavor-changing neutral interactions impose a significant lower limit of 15 TeV on the mass
of heavy CP-even scalars (𝑚𝐻1)[5]. Dark blue dots in fig. 1 represent points adhering to this
requirement. This bound strongly prefers that vev of 𝜒𝐿 has a significant influence on the breaking
of 𝑆𝑈 (2)𝐿 . For significantly large values of 𝑝 (with 𝑝 ≥ 5), a substantial number of blue dots appear
in the region characterized by low 𝑟 and low 𝑤. These points correspond to larger values of 𝜌1
(typically 𝜌1 ≳ 1), which, in turn, drive 𝜌2 to exceed 4, rendering it relatively large. Therefore, the
conventional assumption that 𝑣𝐿 and 𝜅2 are much smaller than 𝜅1 remains valid only when quartic
couplings 𝜌1 and 𝜌2 take moderately large values. Additionally, it is worth noting that very small
values of 𝑞 do not satisfy the 𝑚𝐻1 > 15 TeV constraint, while larger values of 𝑞 lead to violations
of unitarity bounds. These two constraints together constrain the range of 𝑞 to be between 0.01 and
4. We apply the same approach in generic basis and discover that the patterns of permissible points
as a function of 𝑤, as shown in fig. 1, reappear in this basis as well.

We systematically vary model parameters, calculate 𝜅𝑏 and 𝜅𝑡 for each combination. When we
require the heavy Higgs mass 𝑚𝐻1 to be above 15 TeV, we find that only a very small number of
the test points satisfy all the experimental constraints. These points tend to concentrate around the
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coordinates 𝜅𝑏 = 1 and 𝜅𝑡 = 1, resembling the ’alignment by decoupling’ scenario observed in the
two-Higgs-doublet model (2HDM).

(a) (b)

(c) (d)

Figure 1: This figure displays allowed points on the 𝑟-𝑤 plane, with light blue points satisfying constraints
related to 𝑚ℎ, ℎ, 𝜅𝑊 , 𝜅𝑍 , and 𝜅𝑡 , along with theoretical bounds. Red points additionally fulfill the 𝜅𝑏

constraint, and dark blue points meet the extra requirement of 𝑚𝐻1 > 15 TeV.
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6. Conclusions

From the above analysis, it can be concluded that the typical assumption of 𝑣𝐿 , 𝜅2 ≪ 𝜅1 only
holds true for only a fine-tuned set of parameters, especially when quartic couplings 𝜌1 and 𝜌2 have
somewhat large values, even when the value of 𝑞 deviates from 1. We performed calculations with
the full, generic set of quartic couplings and found that the scarcity of allowed points for small
values of 𝑟 and 𝑤 remains, and it is even more pronounced. Therefore, our main finding is as
follows: While most DLRSM studies assume that 𝜅1 ≈ 𝑣EW with other 𝑆𝑈 (2)𝐿 breaking vevs being
negligible, we have demonstrated that significant values of 𝑟 and 𝑤 are consistent with Higgs data
and are favored by the indirect constraint on 𝑚𝐻1 . Additionally, all points satisfying the constraint
𝑚𝐻1 > 15 TeV also exhibit 𝜅𝑡 ,,𝑏 ∼ 1 with high precision. This provides confirmation that the
lightest scalar in the DLRSM achieves alignment with the SM-like Higgs through the process of
decoupling from the heavier scalar states.
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