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By elementary hadron we mean a compact bound state of quarks as opposite to a composite hadron,
which is made up by other elementary hadrons. To decide the structure of exotic hadrons one may
either look for patterns in spectroscopy, as the quark model suggests, or resort to the physics of
shallow bound states, virtual states, cusps etc. In recent times, following an experimental study
by the LHCb collaboration, a discussion has been raised on the role of the scattering effective
range 𝑟0 as a discriminating parameter between the elementary and composite hypotheses for the
𝑋 (3872). I will present a brief introduction to this topic.
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Elementary and composite exotic hadrons

1. Introduction

The wealth of data on exotic hadron resonances has stimulated an interesting discussion about
how to distinguish between elementary and composite unstable particles. Deuteron is stable, and
form factors, telling about its composite structure, can be measured. In a paper dating back to
1965 [1], Weinberg found a criterion to decide if the deuteron is elementary (a compact six-quark
state) or molecular (a proton-neutron nucleus) on the basis of proton-neutron scattering only. His
arguments, leading to evidence for a composite deuteron, turned out recently to be of great interest
for discussing the nature of the exotic resonances like the 𝑋 (3872), which could be a mesonic-
deuteron made by a 𝐷 and a 𝐷̄∗, with a binding energy estimated at about 100 KeV. In a publication
a few years before Weinberg’s, Landau [2] presented an argument relating the binding energy of a
composite state to the coupling to its constituents: this can be found also in [1], but with a notable
difference. In [1] the theoretical possibility is considered of revealing an elementary deuteron,
excluded by construction in [2]. As commented in [3], a molecular 𝑋 should simply respect the
relation determined in [2] between binding energy 𝐵 and coupling 𝑔 to 𝐷𝐷̄∗.

According to [1], the scattering parameter which carries the information on compositeness is
the effective range 𝑟0, provided that a positive scattering length 𝑎 is also measured. In the following
I will review the relation between 𝑟0 and compositeness using a derivation half-way between [1]
and [2]. Experimental data on the lineshape of the 𝑋 can be used to extract 𝑟0 and to determine its
nature. The interpretation of the results obtained is still somewhat controversial.

2. Elementary versus composite, the role of the effective range 𝑟0

Assume that the 𝑋 is either a elementary stateXwith a superposition to the continuum 𝐷𝐷̄∗(𝒌)
or, possibly, a superposition of a compact state X and a bound state of 𝐷 and 𝐷̄∗ — in the latter
case there should be two particles in the spectrum. In both cases [1]

|𝑋⟩ =
√
𝑍 |X⟩ +

∫
𝒌
𝐶𝒌 |𝐷𝐷̄∗(𝒌)⟩︸      ︷︷      ︸

|𝛼⟩

(1)

but with different coefficients𝐶𝒌 and ⟨X|𝛼⟩ = 0. Only one state has been resolved to the date of this
writing, so we might conclude that 𝑋 is either a purely molecular state, 𝑍 = 0, or an elementary state
0 < 𝑍 < 1, strongly coupled to the continuum. The case 𝑍 = 1 is singular in that it corresponds to
an elementary X not interacting with 𝐷 or 𝐷̄∗ — this corresponds to the 𝑍 = 1 normalization of
the free particle propagator in the quantum field theory language1.

The completeness relation 1 = |X⟩⟨X| +
∫
|𝛼⟩⟨𝛼 | substituted in ⟨𝑋 |1|𝑋⟩ gives

1 − 𝑍 =

∫
|⟨𝛼 |𝑋⟩|2𝑑𝛼 =

∫ |⟨𝛼 |𝑉 |𝑋⟩|2
(𝐸 (𝛼) + 𝐵)2 𝑑𝛼 ≡

∫
𝑔2
𝑊

(𝐸 (𝛼) + 𝐵)2 𝑑𝛼 (2)

1If the bare field Φ𝜇 of the 𝑋 can annihilate a one-particle state (of mass 𝑚) with amplitude 𝑁𝑒𝜇/
√

2𝐸 , then the
complete propagator of Φ𝜇 has a residue proportional to 𝑍 = |𝑁 |2 at the pole −𝑚2, where 𝑍 = 1−[coupling to the
continuum of states |𝒌1, 𝒌2⟩, |𝒌1, 𝒌2, 𝒌3⟩, ...]. The latter multi-particles states are not introduced as bound states of some
potential.
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Elementary and composite exotic hadrons

provided that ⟨𝑋 |𝑋⟩ = 1 (eigenstate of 𝐻 = 𝐻0 +𝑉) and that the interaction 𝑉 is defined by

(𝐻0 +𝑉) |𝑋⟩ = −𝐵|𝑋⟩ 𝐻0 |𝛼⟩ = 𝐸 (𝛼) |𝛼⟩ (3)

where 𝐵 is the binding energy or distance from threshold. The (bare) elementary X particle
corresponds to a discrete eigenstate of the free-particle Hamiltonian 𝐻0, 𝐻0 |X⟩ = 𝐸X |X⟩. Notice
that in the non-relativistic formalism

𝑑𝛼 =
𝑑3𝑘

(2𝜋)3 =
𝑘2𝑑𝑘

2𝜋2 =
1

2𝜋2 (
√

2𝑚𝐸)2 𝑑
√

2𝑚𝐸

𝑑𝐸
𝑑𝐸 =

1
4𝜋2 (2𝑚)3/2√𝐸𝑑𝐸 (4)

allows to compute the integral in (2)∫ ∞

0

√
𝐸

(𝐸 + 𝐵)2 𝑑𝐸 =
𝜋

2
√
𝐵

(5)

and therefore to solve (2) in terms of the coupling 𝑔𝑊

𝑔2
𝑊 =

2𝜋
√

2𝑚𝐵

𝑚2 (1 − 𝑍) ≡ 2𝜋𝜘
𝑚2 (1 − 𝑍) (6)

Notice that 𝑔𝑊 = 0 for 𝑍 = 1; in the case of the deuteron this would mean zero coupling to proton
and neutron, as opposite to the expectations for an elementary deuteron. Indeed from (1) and (3)
we see that 𝑍 = 1 requires 𝑉 = 0 since, from (1) and (2)

1 − 𝑍 =

∫
𝒌
|𝐶𝒌 |2 (7)

so |𝑋⟩ = |X⟩ and 𝐸X = −𝐵.
The elementary particle is found for any value of 𝑍 in the range 0 < 𝑍 < 1.
Let𝛼 = 𝛽 = 𝐷𝐷̄∗(𝒌). Assume2 that the 𝑆-matrix element 𝑀𝛽𝛼 is dominated by the propagation

of the 𝑋 so that the scattering amplitude can be written in the polar form [4]

𝑓 (𝛼 → 𝛽) = − 1
2𝜋𝐸

√︄
𝑘 ′𝐸 ′

1𝐸
′
2𝐸1𝐸2

𝑘
𝑀𝛽𝛼 = − 1

8𝜋𝐸
(2𝑚𝐷) (2𝑚𝐷∗) 𝑀𝛽𝛼

= − 1
8𝜋𝐸

(2𝑚𝐷) (2𝑚𝐷∗) (2𝑚𝑋) 𝑀𝛽𝑋

1
𝑝2 + 𝑚2

𝑋
− 𝑖𝜖

𝑀𝑋𝛼

≃ − 1
8𝜋𝐸

8𝑚𝑚2
𝑋

|⟨𝐷𝐷̄∗ |𝑉 |𝑋⟩|2

𝑝2 + 𝑚2
𝑋
− 𝑖𝜖

≡ − 1
8𝜋𝐸

8𝑚𝑚2
𝑋

𝑔2
𝑊

𝑝2 + 𝑚2
𝑋
− 𝑖𝜖

(8)

where 𝑚 is the reduced mass 𝑚 = 𝑚𝐷𝑚𝐷∗/(𝑚𝐷 + 𝑚𝐷∗) and 𝑚𝑋 ≃ 𝑚𝐷 + 𝑚𝐷∗ . This pole structure
would be found in a field theory in which the Lagrangian contains the elementary Φ𝜇 field of the 𝑋

or in the case of a bound state 𝑋 made up by the elementary fields appearing in the Lagrangian.
Adopt the polar expression (8) in the form

𝑓 (𝛼 → 𝛽) = − 1
8𝜋𝐸

𝑔2

𝑝2 + 𝑚2
𝑋
− 𝑖𝜖

(9)

2This assumption follows in the presence of a non-vanishing amplitude ⟨𝐷𝐷̄∗ |𝑋⟩: non-vanishing matrix element of
the one-particle state of mass 𝑚𝑋 and 𝐷† (𝐷̄∗)†Ψ0, the latter being the vacuum. The factor

∑
pol |𝑒 (𝑋) · 𝑒 (𝐷∗ ) |2 ≃ 3 is

incorporated in the definition of 𝑔𝑊 .
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Elementary and composite exotic hadrons

with
𝑔2 ≡ (8𝑚𝑚2

𝑋) × 𝑔2
𝑊 (10)

Consider the case of low energy scattering. Neglecting terms of order 𝐵2 and 𝑇2(𝑇 = 𝑘2/2𝑚) we
find (see Eqs. (3-6) in [3])

𝑓 (𝛼 → 𝛽) = − 1
8𝜋𝑚𝑋

𝑔2

(𝑝𝐷 + 𝑝𝐷∗)2 + 𝑚2
𝑋
− 𝑖𝜖

≃ − 1
16𝜋𝑚2

𝑋

𝑔2

𝐵 + 𝑇
(11)

Equation (11) has to be compared with the general formula for the scattering amplitude in the
effective range expansion

𝑓 =
1

−𝜘0 + 1
2𝑟0𝑘2 − 𝑖𝑘

(12)

where 𝜘0 = 1/𝑎 and 𝑟0 is the effective range. If 𝑘 = 𝑖
√

2𝑚𝐵 ≡ 𝑖𝜘, matching the shallow bound state,
we require the pole condition [5] (

−𝜘0 +
1
2
𝑟0𝑘

2 − 𝑖𝑘

)
𝑘=𝑖𝜘

= 0 (13)

which implies
−𝜘0 = −𝜘 + 1

2
𝑟0𝜘

2 (14)

to be substituted back in (12), finding

𝑓 =
1

𝑟0
2 (𝑘2 + 𝜘2) − (𝜘 + 𝑖𝑘)

=
1

𝑟0
2 (𝑘2 + 𝜘2) − (𝜘+𝑖𝑘 ) (𝜘−𝑖𝑘 )

(𝜘−𝑖𝑘 )
= (15)

= − 1
𝑟0
2 (𝑘2 + 𝜘2) − 1

2𝜘 (𝑘2 + 𝜘2)
= − 𝜘

𝑚(1 − 𝑟0𝜘)
1

𝐵 + 𝑇
(16)

We have reduced the general expression for the scattering formula in a form amenable to comparison
with the polar expression found in (11). From (11) and (16), and making use of (6) and (10), we
find the main result: 𝑟0 depends on 𝑍 as in

𝑟0 = − 𝑍

1 − 𝑍
𝑅 +𝑂

(
1
Λ

)
(17)

where
𝑅 =

1
𝜘
=

1
√

2𝑚𝐵
(18)

and 1/Λ = 1/𝑚𝜋 , in the case of the deuteron, obtained by integrating out the contribution of the
pion since 𝑚𝑛 − 𝑚𝑝 ≪ 𝑚𝜋 . In the case of the 𝑋 , however, 𝑚𝐷∗ − 𝑚𝐷 ≃ 𝑚𝜋 : the pion cannot be
integrated out and the scale Λ (see next section) is found to be Λ ≈ 40 MeV.

For 𝑍 = 0 (the molecule) we would expect 𝑟0 ≈ 1/|Λ| fm, in the case of a purely attractive
potential — the sign of 𝑟0 has to be positive in that case, according to some general results
reviewed in [5]. As we will see in Section 4, including the pion interactions between the molecular
components does not generate a purely attractive potential and a special treatment is required.

For 0 < 𝑍 < 1 (the elementary particle) since 𝑅 is large, 𝐵 being very small, there is a
large negative pull towards the negative range of 𝑟0 values. If we had large enough positive 𝑂 (1/Λ)

4
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Elementary and composite exotic hadrons

corrections (that is not the case, see Section 4) we might also have 0 < 𝑍 < 1 and 𝑟0 > 0. A negative
experimental value of 𝑟0 is the token for the elementary state, as long as 𝑂 (1/Λ) corrections are
positive.

The scattering length 𝑎 is obtained by plugging the expression (17) for 𝑟0 into(
−𝜘0 +

1
2
𝑟0𝑘

2 − 𝑖𝑘

)
𝑘=𝑖𝜘

= 0 (19)

giving a positive value, up to corrections 𝑂 (1/Λ)

𝑎 =
2(1 − 𝑍)

2 − 𝑍
𝑅 +𝑂

(
1
Λ

)
(20)

Let us consider now the argument discussed in [2]. The potential scattering of two very slow
particles 𝑎, 𝑏, with 𝑉 featuring a shallow bound state at −𝐵, has a universal scattering amplitude
which does not depend on the details of 𝑉 , and is given by

𝑓 (𝛼 → 𝛽) = 1
𝑘 (cot 𝛿0 − 𝑖) = − 1

√
2𝑚

√
𝐵 − 𝑖

√
𝑇

𝐵 + 𝑇
(21)

where 𝛼 = 𝛽 = 𝑎𝑏. This formula is obtained by the shallow bound state condition [6] summarized
in cot 𝛿0 = −

√︁
𝐵/𝑇 . In this treatment elementary states are excluded.

A comparison of (21), at 𝑘 = 𝑖𝜘, with our the pole formula in (16) can be done. From

− 1
√

2𝑚
2
√
𝐵

𝐵 + 𝑇
=

(
− 𝜘

𝑚(1 − 𝑟0𝜘)
1

𝐵 + 𝑇

)
𝑟0→0

(22)

we get (see Eq. (10)) the Landau coupling

𝑔2 = 16𝜋
√

2𝑚𝐵
𝑚2

𝑋

𝑚
= 8𝑚𝑚2

𝑋 × (𝑔𝑊 )𝑍=0 (23)

where 𝑚 is the reduced mass of 𝑎, 𝑏 particles and 𝑚𝑋 ≃ (𝑚𝑎 + 𝑚𝑏). Therefore the coupling of a
bona fide molecule to its constituent hadrons should simply obey the relation (23)3.

3. The effective range of 𝑋 (3872) from data

In the case of the deuteron it is found experimentally that

𝑟0 ≃ +1.74 fm (24)

which is perfectly compatible with 𝑍 = 0, given that the 𝑂 (1/𝑚𝜋) corrections are expected to be
positive for an attractive potential [5]. In the case of the 𝑋 , LHCb finds [7] (see the analysis in [5])

𝑟0 = − 𝑍

1 − 𝑍
𝑅 = −5.34 fm (25)

𝑎 =
2(1 − 𝑍)

2 − 𝑍
𝑅 = 28 fm (26)

3The total width of the 𝑋 times its branching fraction into 𝐷𝐷̄∗ is proportional to the coupling squared, i.e. to the
binding energy. The measured branching fraction, lifetime and binding energy should satisfy the Landau relation in the
case of a molecular 𝑋 [3].
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Elementary and composite exotic hadrons

giving
𝑍 = 0.15 and 𝐵 = 20 KeV (27)

This is not the expression of a "small quota" of the compact component: it simply means that the
𝑋 is a compact state, with a significant coupling to the continuum 4. If we naively estimate the
𝑂 (1/Λ) corrections from pion interactions to be approximately ±5 fm we would have 5

𝑟0 ≃ − 𝑍

1 − 𝑍
𝑅 ± 5 fm = −5.34 fm (28)

In the positive sign case this means 0.2 < 𝑍 < 0.5 for reasonable values of 𝑅. In the negative sign
case, however, we could have 𝑍 ≃ 0 at 𝑟0 ≃ −5.3 fm. We need to know the size and sign of the
correction. This has been studied in [8] and [9] using the diagrammatic methods in a non-relativistic
effective field theory for the 𝑋 . When including pion interactions it is found that the correction to
𝑟0 = 0 is indeed negative, but small (∼ 0.2, rather than 5 fm!). We confirm this using the method
of the Distorted-Wave-Born-Approximation in non-relativistic quantum mechanics [10], allowing
a simpler calculation.

In a very recent paper by the BESIII collaboration [11], the results of LHCb are somewhat
confirmed, although with sizeable uncertainties

𝑟0 = −4.1+0.9+2.8
−3.3−4.4 fm

𝑎 = +16.5+27.6+27.7
−7.0−5.6 fm (29)

More precise experimental determinations of 𝑟0 for the 𝑋 and possibly for all other exotic resonances
are needed. In [12] the 𝑇+

𝑐𝑐 resonance has been studied finding −16.9 < 𝑟0 < 0 (fm).

4. Pion interactions in the molecular picture

The molecular 𝑋 is the expression of a bound state in the 𝛿-function potential

𝑈𝑠 (𝑟) = −𝜆0𝛿
3(𝒓) (30)

This is a good approximation to the real (unknown) potential given that the wavefunction is expected
to be broader than the range 𝑅0 of the potential: 𝑅 = 1/

√
2𝑚𝐵 ≫ 𝑅0.

The pion exchange potential to be added to the strong 𝛿3(𝑟) potential could, in principle,
contribute to 𝑟0 with the negative sign. Let us compute the potential as the Fourier transform of the
pion exchange diagram (actually is a 𝑢-channel) in the non-relativistic approximation. The mass
scale 𝜇2 = (𝑚𝐷∗ − 𝑚𝐷)2 − 𝑚2

𝜋 appears in

𝑈𝑤 = − 𝑔2

2 𝑓 2
𝜋

𝒆 (𝜆)
𝑖

𝒆 (𝜆
′ )

𝑗

∫
𝑞𝑖𝑞 𝑗 𝑒

𝑖q·r

q2 − 𝜇2 − 𝑖𝜖

𝑑3𝑞

(2𝜋)3 = − 𝑔2

6 𝑓 2
𝜋

(
𝛿3(𝑟) + 𝜇2 𝑒

𝑖𝜇𝑟

4𝜋𝑟

)
𝒆 (𝜆) · 𝒆 (𝜆′ ) (31)

where 𝒆 (𝜆)
𝑖

and 𝒆 (𝜆
′ )

𝑗
are the polarizations vectors of the initial and final 𝐷∗ mesons respectively,

and we used the following 𝑆−wave relation to solve the integral

⟨𝑛𝑖𝑛 𝑗⟩ =
1
3
𝛿𝑖 𝑗 (32)

4Or there are two states in the spectrum: the two orthogonal combinations of elementary and molecular bound state.
5Since we estimate Λ ≃ 40 MeV, and do not know the sign and size of the corrections — see Section 4.
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In the non-relativistic limit of 𝐷 and 𝐷∗ at rest, 𝒆 (𝜆) · 𝒆 (𝜆′ ) = 𝛿𝜆𝜆′ , the longitudinal polarization
(along 𝑧) being 𝑒𝐿 ≃ (0, 0, 1, 0).

The total potential 𝑉 = 𝑈𝑠 +𝑈𝑤 contains therefore an infinite range complex term6: a Yukawa
complex potential which reflects the fact that a real pion can be produced in the decay of the
unstable 𝐷∗ and still mediate the 𝐷∗𝐷̄ → 𝐷𝐷̄∗ interaction. An estimate of the 𝛼 constant might
be reassuring on that 𝑈𝑤 could not possibly spoil the Weinberg analysis described in the previous
sections. Still a calculation of the contribution to 𝑟0 is needed because inverse powers of 𝜇 can
occur. The full potential is

𝑉 = 𝑉𝑠 +𝑉𝑤 = − (𝜆0 + 4𝜋𝛼) 𝛿3(𝒓) − 𝛼𝜇2 𝑒
𝑖𝜇𝑟

𝑟
(33)

where 𝛼 = 𝑔2/(24𝜋 𝑓 2
𝜋) = 5 × 10−4/𝜇2, 𝑉𝑠 includes the contribution of both the ‘strong’ Dirac-𝛿

potential and that from pion interactions and 𝑉𝑤 is the complex Yukawa potential. The general
formula for the scattering amplitude has two terms, 𝑓𝑠, with 𝑟0 = 0 by definition, and the perturbative
correction 𝑓𝑤 due to 𝑉𝑤

𝑓 ≡ 1
𝑘 cot 𝛿(𝑘) − 𝑖𝑘

= 𝑓𝑠 + 𝑓𝑤 =
1

− 1
𝑎
− 𝑖𝑘

+ 𝑓𝑤 (34)

where
𝑓𝑤 = − 2𝑚

4𝑘2

∫
𝑉𝑤 (𝑟) 𝜒2

𝑠 (𝑟) 𝑑𝑟 (35)

and 𝜒𝑠 (𝑟) are the scattering wavefunctions in the 𝛿3(𝑟) potential while 𝑚 is the reduced mass of
the 𝐷𝐷̄∗ pair. A derivation of 𝑓𝑤 can be found in the Appendix.

Thus we conclude that 𝑟0 due to pion interactions in the molecular picture of the 𝑋 is determined
by the 𝑘2 coefficient in the double expansion around 𝑟0 = 0 and 𝛼 = 0 of

𝑓 −1 =

(
1

− 1
𝑎
− 𝑖𝑘

− 2𝑚
4𝑘2

∫
𝑉𝑤 (𝑟) 𝜒2

𝑠 (𝑟) 𝑑𝑟
)−1

(36)

To compute the integral in 𝑓𝑤 we might proceed along the following steps: 𝑖) Use 𝑒−𝜇𝑟 in
place of 𝑒𝑖𝜇𝑟 and set 𝜇 → 𝑖𝜇 in the final results; 𝑖𝑖) Replace 𝜒𝐼

𝑠 (𝑟) = 2𝑘𝑟
(
𝑒𝑖 𝛿 sin(𝑘𝑟+𝛿 )

𝑘𝑟
− 𝑒𝑖 𝛿 sin 𝛿

𝑘𝑟

)
for 0 < 𝑟 < 𝜆 and 𝜒𝐼 𝐼

𝑠 (𝑟) = 2𝑘𝑟
(
𝑒𝑖 𝛿 sin(𝑘𝑟+𝛿 )

𝑘𝑟

)
for 𝑟 > 𝜆. The subtraction in the origin is done

to implement the relation (3.16) in [13]. Finally one sets 𝜆 → 0. The integral turns out to be
finite; 𝑖𝑖𝑖) Replace 𝛿 = cot−1(−1/𝑘𝑎𝑠) [13]; 𝑖𝑣) Double-expand the result around 𝑘 = 0 and
𝛼 = 0; 𝑣) Take the 𝜆 → 0 limit and set 𝜇 → 𝑖𝜇 eventually. The same integral has been computed
removing the divergence at 𝑟 = 0 with other regularizations, as discussed in [10], finding the same
results.

From formula (36) one gets

𝑟0 = 2𝑚𝛼

(
2

𝜇2𝑎2 + 8𝑖
3𝜇𝑎

− 1
)

(37)

6with oscillating real and imaginary parts: not a purely attractive potential.
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This formula agrees analytically with what found in [9], in the limit 𝑚𝜋/𝑚𝐷 ≪ 1 [10]. The
numerical values found reassure on the applicability of the Weinberg criterion

−0.20 fm ≲ Re 𝑟0 ≲ −0.15 fm (38)

and
0 fm ≲ Im 𝑟0 ≲ 0.17 fm (39)

An experimental value 𝑟0 ≃ −5.3 fm is not compatible with what expected in the molecule picture
(𝑟0 = 0), also after including pion interactions.

5. Conclusions

To investigate the structure of the exotic unstable hadrons one may either look for patterns
in spectroscopy, as the quark model suggests [14], or resort to the physics of shallow bound
states [15, 16]. The absence so far of charged partners for the 𝑋 (3872), the most studied among
exotic hadrons, is a problem for the elementary interpretation. The very notion of a compact
tetraquark was also challenged in a well known discussion on QCD in a large number of colors [17]
but reconsidered more recently in [18]. For the time being, the scattering effective range 𝑟0 deduced
from the lineshape of the 𝑋 , as measured by LHCb and BESIII, speaks in favor of a compact state,
which would also help to explain the production of 𝑋 at hadron colliders [19]. A general consensus
on the method used to extract 𝑟0 from data should be found.
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Appendix

To obtain formula (35) we start from the Born formula for the scattering amplitude

𝑓 = − 𝑚

2𝜋

∫
𝑉 (𝑟) 𝑒𝑖 (𝒌−𝒌′ ) ·𝒓𝑑3𝑟 (40)

valid when the scattering field can be regarded as a perturbation7 and all the scattering phases 𝛿ℓ
are small. The plane wave factors can be expanded as in

𝑒𝑖𝒌 ·𝒓 =
∞∑︁
ℓ=0

𝑖ℓ 𝑗ℓ (𝑘𝑟) (2ℓ + 1)𝑃ℓ ( 𝒌̂ · 𝒓) (41)

7The condition |𝑉 | ≪ 1/𝑚𝑅2
0 in our case can be written (taking |𝑉 | = |𝑉 (𝑅0) |) as

𝛼𝜇2 cos 𝜇𝑅0
𝑅0

≪ 1
𝑚𝑅2

0

which works as long as 𝑅0 ≲ 20 fm.
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and

𝑒−𝑖𝒌
′ ·𝒓 =

∞∑︁
ℓ=0

𝑖ℓ 𝑗ℓ (𝑘 ′𝑟) (2ℓ + 1) (−1)ℓ𝑃ℓ ( 𝒌̂′ · 𝒓) (42)

In the 𝑒𝑖𝒌 ·𝒓𝑒−𝑖𝒌
′ ·𝒓 product, 𝑖2ℓ (−1)ℓ = +1 and using the relation∫

𝑃ℓ (𝒏1 · 𝒏2)𝑃ℓ′ (𝒏1 · 𝒏3)𝑑Ω1 = 𝛿ℓℓ′
4𝜋

(2ℓ + 1) 𝑃ℓ (𝒏2 · 𝒏3) (43)

we get

𝑓 = −2𝑚
∞∑︁
ℓ=0

(2ℓ + 1)𝑃ℓ (cos 𝜃)
∫

𝑉 (𝑟) ( 𝑗ℓ (𝑘𝑟))2𝑟2𝑑𝑟 (44)

to be compared with

𝑓 =

∞∑︁
ℓ=0

(2ℓ + 1)𝑃ℓ (cos 𝜃) 𝑒
𝑖 𝛿ℓ sin 𝛿ℓ

𝑘
(45)

giving for the partial wave amplitude

𝑓ℓ =
𝑒𝑖 𝛿ℓ sin 𝛿ℓ

𝑘
= −2𝑚

∫
𝑉 (𝑟) ( 𝑗ℓ (𝑘𝑟))2𝑟2𝑑𝑟 (46)

Using the definition of the free particle reduced wave function

𝜒
(0)
ℓ

(𝑟) = 2𝑘𝑟 𝑗ℓ (𝑘𝑟) (47)

we finally have

𝑓ℓ = − 2𝑚
4𝑘2

∫
𝑉 (𝑟) (𝜒 (0)

ℓ
(𝑟))2 𝑑𝑟 (48)

The 𝑓𝑤 in (34) corresponds to the ℓ = 0 partial amplitude

𝑓𝑤 = − 2𝑚
4𝑘2

∫ ∞

0
𝑉𝑤 (𝑟) (𝜒𝑠 (𝑟))2 𝑑𝑟 (49)

where the Distorted-Wave-Born-Approximation consists here in substituting the free particle wave
functions with the scattering wave functions for the 𝑉𝑠 potential

𝜒
(0)
ℓ=0(𝑟) → 𝜒𝑠 (𝑟) (50)

The 𝜒𝑠 (𝑟) are determined in [13].
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