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Motivated by the crucial role played by the discrete flavour symmetry groups in explaining the
observed neutrino oscillation data, we consider the application 𝐴4 modular symmetry in the linear
seesaw framework. The basic idea behind using the modular symmetry is to minimize the usage of
multiple flavon fields having specific vacuum expectation value (VEV) alignments. The breaking
of flavor symmetry takes place when the complex modulus 𝜏 acquires VEV. Linear seesaw in
this framework is realized with six heavy 𝑆𝑈 (2)𝐿 singlet fermion superfields and a weighton.
We discuss the phenomena of neutrino mixing and show that the obtained mixing angles and
CP violating phase in this framework are compatible with the observed 3𝜎 range of the current
oscillation data. In addition, we also investigate the phenomenon of leptogenesis arising from
the decay of lightest heavy fermion superfield to explain the observed baryon asymmetry of the
Universe.
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1. Introduction

The origin of neutrino masses and mixing still remains as one of the open issues. The
most popular scenario to generate the light neutrino masses is the canonical or Type-I seesaw,
where right-handed neutrinos (𝑁𝑅𝑖), transforming as singlets under standard model gauge group
are introduced. In order to explain the eV-scale light neutrinos, the masses of the right-handed
neutrinos are supposed to be O(1015) GeV, which are obviously beyond the reach of current and
future experiments. However, the seesaw scale can be lowered to TeV range, if one includes three
additional left-handed sterile neutrinos (𝑆𝐿𝑖), in conjunction with the three right-handed neutrinos.
This mechanism is known as linear or inverse seesaw depending on the structure of the neutrino
mass matrix in the (𝜈𝐿 , 𝑁𝑅, 𝑆

𝑐
𝐿
) basis.

In general, to implement the low-scale seesaw mechanisms, certain symmetries are assumed,
like discrete flavour symmetries 𝐴4 𝑆3, 𝑆4, etc., to avoid certain unwanted terms in the extended
neutrino mass matrix of (𝜈𝑐

𝐿
,N𝑅𝑖

,S𝐿𝑖
)𝑇 basis. However, a number of flavon fields are required for

the breaking of these flavor symmetries as well as to accommodate the observed neutrino oscillation
data. Additionally, the vacuum alignment of these flavon fields pose a challenging task. However,
these issues can be avoided by introducing the modular symmetry in addition to the discrete flavor
symmetry as discussed in Refs. [1, 2]. In recent times, modular symmetry [3–5] has gained the pace
and is in the limelight. The advantage of modular symmetry is that it restricts the usage of excess
flavon fields, where, the role of flavons is performed by Yukawa couplings, which are holomorphic
function of modulus 𝜏. When this modulus acquires the vacuum expectation value (VEV), it
breaks the flavor symmetry. In this work, we would like to study the neutrino phenomenology and
leptogenesis in the context of discrete 𝐴4 modular symmetry [6]. Modular symmetries have been
impeccable in neutrino and quark sectors as the Yukawa couplings transform non-trivially under
𝐴4 symmetry, that helps to explore the neutrino phenomenology with a specific flavor structure of
the mass matrix.

The outline of the paper is as follows. In Sec.2, we outline the model framework that provides
the well known linear seesaw mechanism with discrete 𝐴4-modular symmetry. In Sec.3, numerical
correlational study between different observables of neutrino sector is established. Leptogenesis in
the context of the present model is discussed in Sec.4. Finally in Sec. 5, we conclude our results.

2. Model Framework

Here, we introduce the model framework for investigating the impact of 𝐴4 modular symmetry
on neutrino phenomenology and leptogenesis. The standard model is extended with discrete 𝐴4

modular symmetry and a global 𝑈 (1)𝑋 symmetry is imposed to forbid certain unwanted terms
in the superpotential. The particle spectrum is enriched with six extra singlet heavy fermion
superfields (𝑁𝑅𝑖 and 𝑆𝐿𝑖) and one weighton field (𝜌). The extra supermultiplets of the model
transform as triplet under the 𝐴4 modular group. The 𝐴4 and 𝑈 (1)𝑋 symmetries are considered
to be broken at a scale much higher than the electroweak symmetry breaking. The charges under
𝑆𝑈 (2)𝐿 ×𝑈 (1)𝑌 ×𝑈 (1)𝑋 × 𝐴4 are shown below in Table 1, where 𝑘 𝐼 being the modular weight.
Additionally, the Yukawa coupling 𝒀 = (𝑦1, 𝑦2, 𝑦3) transforms as a triplet under 𝐴4 symmetry with
modular weight 2. The modular forms of the Yukawa coupling Y can be expressed in terms of
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Dedekind eta-function 𝜂(𝜏) and its derivative [3] as

𝑦1(𝜏) =
𝑖

2𝜋

(
𝜂′(𝜏/3)
𝜂(𝜏/3) + 𝜂

′((𝜏 + 1)/3)
𝜂((𝜏 + 1)/3) + 𝜂

′((𝜏 + 2)/3)
𝜂((𝜏 + 2)/3) − 27𝜂′(3𝜏)

𝜂(3𝜏)

)
,

𝑦2(𝜏) =
−𝑖
𝜋

(
𝜂′(𝜏/3)
𝜂(𝜏/3) + 𝜔2 𝜂

′((𝜏 + 1)/3)
𝜂((𝜏 + 1)/3) + 𝜔𝜂

′((𝜏 + 2)/3)
𝜂((𝜏 + 2)/3)

)
, (1)

𝑦3(𝜏) =
−𝑖
𝜋

(
𝜂′(𝜏/3)
𝜂(𝜏/3) + 𝜔𝜂

′((𝜏 + 1)/3)
𝜂((𝜏 + 1)/3) + 𝜔2 𝜂

′((𝜏 + 2)/3)
𝜂((𝜏 + 2)/3)

)
.

Fields 𝑒𝑐
𝑅

𝜇𝑐
𝑅

𝜏𝑐
𝑅

𝐿𝐿 𝑁𝑅 𝑆𝑐
𝐿

𝐻𝑢,𝑑 𝜌

𝑆𝑈 (2)𝐿 1 1 1 2 1 1 2 1
𝑈 (1)𝑌 1 1 1 −1/2 0 0 1/2,−1/2 0
𝑈 (1)𝑋 1 1 1 −1 1 −2 0 1
𝐴4 1 1′ 1′′ 1, 1′′, 1′ 3 3 1 1
𝑘 𝐼 1 1 1 −1 −1 −1 0 0

Table 1: Particle content of the model and their charges under 𝑆𝑈 (2)𝐿 ×𝑈 (1)𝑌 ×𝑈 (1)𝜒 × 𝐴4 where 𝑘 𝐼 is
the modular weight.

To obtain the light active neutrino masses in the linear seesaw framework, we need to determine
the extended mass matrix in the flavor basis of (𝜈𝐿 , 𝑁𝑅, 𝑆𝑐

𝐿
) is expressed as

M =
©­­«

0 𝑀𝐷 𝑀𝐿𝑆

𝑀𝑇
𝐷

0 𝑀𝑅𝑆

𝑀𝑇
𝐿𝑆

𝑀𝑇
𝑅𝑆

0

ª®®¬ . (2)

The resulting light neutrino mass formula can be obtained in the limit 𝑀𝑅𝑆 ≫ 𝑀𝐷 , 𝑀𝐿𝑆 as,

𝑚𝜈 = 𝑀𝐷𝑀
−1
𝑅𝑆𝑀

𝑇
𝐿𝑆 + transpose. (3)

The Dirac mass matrix of the light neutrinos 𝑀𝐷 can be obtained from the superpotential

W𝐷 = 𝛼𝐷𝐿𝑒𝐿𝐻𝑢 (𝒀𝑁𝑅)1 + 𝛽𝐷𝐿𝜇𝐿
𝐻𝑢 (𝒀𝑁𝑅)1′ + 𝛾𝐷𝐿𝜏𝐿𝐻𝑢 (𝒀𝑁𝑅)1′′ , (4)

and can be expressed as

𝑀𝐷 =
𝑣𝑢√

2


𝛼𝐷 0 0
0 𝛽𝐷 0
0 0 𝛾𝐷



𝑦1 𝑦3 𝑦2

𝑦2 𝑦1 𝑦3

𝑦3 𝑦2 𝑦1

𝐿𝑅 . (5)

Analogoulsly, the pseudo-Dirac mass matrix can be obtained from the superpotential havinng the
form

W𝐿𝑆 =

[
𝛼′𝐷𝐿𝑒𝐿𝐻𝑢 (𝒀𝑆𝑐𝐿)1 + 𝛽′𝐷𝐿𝜇𝐿

𝐻𝑢 (𝒀𝑆𝑐𝐿)1′ + 𝛾′𝐷𝐿𝜏𝐿𝐻𝑢 (𝒀𝑆𝑐𝐿)1′′
] 𝜌3

Λ3 , (6)
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𝑀𝐿𝑆 =
𝑣𝑢√

2

(
𝑣𝜌√
2Λ

)3

𝛼′
𝐷

0 0
0 𝛽′

𝐷
0

0 0 𝛾′
𝐷



𝑦1 𝑦3 𝑦2

𝑦2 𝑦1 𝑦3

𝑦3 𝑦2 𝑦1

𝐿𝑅 . (7)

The mixing between the two heavy fermions originates from the interaction term

W𝑀𝑅𝑆
= [𝛼𝑆𝑁𝒀 (𝑆𝐿𝑁𝑅)symm + 𝛽𝑆𝑁𝒀 (𝑆𝐿𝑁𝑅)Anti−symm]𝜌 , (8)

and using ⟨𝜌⟩ = 𝑣𝜌/
√

2, the corresponding mass matrix can be expressed as

𝑀𝑅𝑆 =
𝑣𝜌√

2

©­­«
𝛼𝑁𝑆

3


2𝑦1 −𝑦3 −𝑦2

−𝑦3 2𝑦2 −𝑦1

−𝑦2 −𝑦1 2𝑦3

 + 𝛽𝑁𝑆


0 𝑦3 −𝑦2

−𝑦3 0 𝑦1

𝑦2 −𝑦1 0


ª®®¬ . (9)

The masses for the heavy fermions can be found in the basis (𝑁𝑅, 𝑆
𝑐
𝐿
)𝑇 as,

𝑀𝐻 𝑓 =

(
0 𝑀𝑅𝑆

𝑀𝑇
𝑅𝑆

0

)
, (10)

which leads to six doubly degenerate mass eigenstates for the heavy fermions upon diagonalization.

3. Numerical Analysis

For numerical analysis, we use the values of the oscillation parameters from the global fit
data [7]. Here, we numerically diagonalize the neutrino mass matrix (3) through the relation
𝑈†M𝑈 = diag(𝑚2

1, 𝑚
2
2, 𝑚

2
3), where M = 𝑚𝜈𝑚

†
𝜈 and 𝑈 is an unitary matrix, from which the

neutrino mixing angles can be extracted using the standard relations:

sin2 𝜃13 = |𝑈13 |2, sin2 𝜃12 =
|𝑈12 |2

1 − |𝑈13 |2
, sin2 𝜃23 =

|𝑈23 |2
1 − |𝑈13 |2

. (11)

To accommodate the current oscillation data, we scan the values of the model parameters in the
following ranges:

Re[𝜏] ∈ [−0.5, 0.5], Im[𝜏] ∈ [1, 2], {𝛼𝐷 , 𝛽𝐷 , 𝛾𝐷} ∈ 10−5 [0.1, 1], {𝛼′𝐷 , 𝛽′𝐷 , 𝛾′𝐷} ∈ 10−2 [0.1, 1],
𝛼𝑁𝑆 ∈ [0, 0.5], 𝛽𝑁𝑆 ∈ [0, 0.0001], 𝑣𝜌 ∈ [10, 100] TeV, Λ ∈ [100, 1000] TeV.

The input parameters are randomly scanned over the above mentioned ranges and the allowed
regions for those are initially constrained by the observed 3𝜎 limit of solar and atmospheric mass
squared differences and mixing angles and then further constrained by the observed sum of active
neutrino masses

∑
𝑚𝑖 < 0.12 eV [8]. For normal ordering, the typical range of modulus 𝜏 is found

to be
−0.5 ≲ Re[𝜏] ≲ 0.5 and 1 ≲ Im[𝜏] ≲ 2 . (12)

Thus, the values of the Yukawa couplings, which are dependent on 𝜏, found to vary in the following
ranges,

0.99 ≲ 𝑦1(𝜏) ≲ 1, 0.1 ≲ 𝑦2(𝜏) ≲ 0.8 and 0.01 ≲ 𝑦3(𝜏) ≲ 0.3. (13)
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Figure 1: Top left (right) panel represents the correlation between sin2 𝜃13 (sin2 𝜃12 and sin2 𝜃23) with the
sum of active neutrino masses while the bottom panel depicts correlation of effective neutrino mass 𝑚𝑒𝑒 with
the sum of active neutrino masses.

Variation of the mixing angles with the sum of active neutrino masses, consistent with the allowed
3𝜎 range are obtained, as shown in the top left and right panels of Fig. 1. The effective neutri-
noless double beta decay mass parameter 𝑚𝑒𝑒 = |𝑚1 cos2 𝜃12 cos2 𝜃13 + 𝑚2 sin2 𝜃12 cos2 𝜃13𝑒

𝑖𝛼21 +
𝑚3 sin2 𝜃13𝑒

𝑖 (𝛼31−2𝛿𝐶𝑃 ) |, where 𝛼21 and 𝛼31 are Majorana phases, for both normal and inverted
hierarchies is found to have a maximum value of 55 meV from the variation of observed sum of
active neutrino masses, which is presented in the bottom panel of Fig. 1. The horizontal pink and
cyan bands represent the 3𝜎 sensitivity limits of current GERDA and the future LEGEND-200
experiments respectively.

4. Leptogenesis

Understanding the origin of neutrino mass and baryon asymmetry of the Universe (BAU) are
two major challenges in Particle Physics. Leptogenesis plays a vital role in relating these two issues.
The baryon asymmetry is parameterized in terms of baryon to photon ratio [8],

𝜂 =
𝑛𝐵 − 𝑛𝐵̄
𝑛𝛾

= (6.12 ± 0.04) × 10−10 , (14)

where 𝑛𝐵, 𝑛𝐵̄ and 𝑛𝛾 represent the number densities of baryons, antibaryons and photons. Lepto-
genesis is known be one of the most preferred scenario to generate the observed baryon asymmetry
of the Universe where the lepton asymmetry is generated through the decay of heavy fermions.
For quasi-degenerate heavy Majorana neutrinos, resonant leptogenesis occurs, resulting a large CP
asymmetry. The present model includes six heavy states with doubly degenerate masses for each
pair as seen from Eqn.(10). But one can introduce a higher dimensional mass term for the heavy

5
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neutrino (𝑆𝑐
𝐿
) as

𝐿𝑀 = −𝛼𝑅𝑌𝑆𝑐𝐿𝑆𝑐𝐿
𝜌4

Λ3 . (15)

This leads to a small mass splitting between the heavy fermions, there by enhancing the CP asym-
metry to generate required lepton asymmetry [9, 10]. This leads to a small mass splitting between
the heavy fermions, there by enhancing the CP asymmetry through the self energy contribution (𝜖
type CP asymmetry). Thus, one can construct the right-handed Majorana mass matrix as follows

𝑀𝑅 =
𝛼𝑅𝑣

4
𝜌

6Λ3

©­­«
2𝑦1 −𝑦3 −𝑦2

−𝑦3 2𝑦2 −𝑦1

−𝑦2 −𝑦1 2𝑦3

ª®®¬ . (16)

The coupling 𝛼𝑅 is chosen to be extremely small to retain the linear seesaw structure of the mass
matrix (2), i.e., 𝑀𝐷 , 𝑀𝐿𝑆 ≫ 𝑀𝑅 and such inclusion does not affect the previous results. However,
this term introduces a small mass splitting and the 2 × 2 submatrix of Eqn. (2) in the (𝑁𝑅, 𝑆

𝑐
𝐿
)

basis, now can be written as

𝑀 =

(
0 𝑀𝑅𝑆

𝑀𝑇
𝑅𝑆

𝑀𝑅

)
. (17)

Block diagonalization of the above mass matrix (17) yields

𝑀 ′ =

(
𝑀𝑅𝑆 + 𝑀𝑅

2 −𝑀𝑅

2
−𝑀𝑅

2 −𝑀𝑅𝑆 + 𝑀𝑅

2

)
≈

(
𝑀𝑅𝑆 + 𝑀𝑅

2 0
0 −𝑀𝑅𝑆 + 𝑀𝑅

2

)
. (18)

Therefore, the mass eigenstates (𝑁±) are related to 𝑁𝑅 and 𝑆𝑐
𝐿

through(
𝑆𝑐
𝐿𝑖

𝑁𝑅𝑖

)
=

(
cos 𝜃 − sin 𝜃
sin 𝜃 cos 𝜃

) (
𝑁+
𝑖

𝑁−
𝑖

)
. (19)

The mass eigenvalues for the new states 𝑁+ and 𝑁− can be obtained by diagonalizing the block
diagonal form of heavy superfield masses, expressed as

𝑀𝑅𝑆 ± 𝑀𝑅

2
=

(
𝛼𝑁𝑆𝑣𝜌√

2
±
𝛼𝑅𝑣

4
𝜌

4Λ3

) ©­­«
2𝑦1 −𝑦3 −𝑦2

−𝑦3 2𝑦2 −𝑦1

−𝑦2 −𝑦1 2𝑦3

ª®®¬ . (20)

Thus, we get three sets of nearly degenerate mass states after diagonalization. We further assume
that the lightest pair with TeV scale masses dominantly contribute to the CP asymmetry.

The evolution of lepton asymmetry can be deduced from the dynamics of relevant Boltzmann
equations. Sakharov criteria [11] demand the decay of parent fermion to be out of equilibrium to
generate the lepton asymmetry. To impose this condition, one has to compare the Hubble rate with
the decay rate as follows

𝐾 =
Γ𝑁−

1

𝐻 (𝑇 = 𝑀−
1 )

. (21)
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Figure 2: Left panel projects the comparison of interaction rates with Hubble expansion, where purple
lines correspond to decay (solid), inverse decay (dotted) and scattering rates plotted for various values of
Majorana coupling (green, orange, blue). Right panel projects the evolution of 𝑌𝐵−𝐿 (dashed) as a function
of 𝑧 = 𝑀−

1 /𝑇 .

Here, 𝐻 =
1.67√𝑔★ 𝑇2

𝑀Pl
, with 𝑀Pl = 1.22 × 1019 GeV and we consider the value of the relativistic

degrees of freedom at temperature 𝑇 ∼ 1 TeV, which is roughly same as its SM value i.e., 𝑔★ =

106.75, as no new particles have been observed so far up to the TeV scale. The Boltzmann equations
for the evolution of the number densities of right-handed fermion and lepton, written in terms of
yield parameter (ratio of number density to entropy density) are given by [12–14]

𝑑𝑌𝑁−

𝑑𝑧
= − 𝑧

𝑠𝐻 (𝑀−
1 )


(
𝑌𝑁−

𝑌
eq
𝑁−

− 1

)
𝛾𝐷 + ©­«

(
𝑌𝑁−

𝑌
eq
𝑁−

)2

− 1ª®¬ 𝛾𝑆
 ,

𝑑𝑌𝐵−𝐿
𝑑𝑧

= − 𝑧

𝑠𝐻 (𝑀−
1 )

[
𝜖𝑁−

(
𝑌𝑁−

𝑌
eq
𝑁−

− 1

)
𝛾𝐷 − 𝑌𝐵−𝐿

𝑌
eq
ℓ

𝛾𝐷

2

]
, (22)

where 𝑠 denotes the entropy density, 𝑧 = 𝑀−
1 /𝑇 , 𝑌 eq

𝑁− and 𝑌 eq
ℓ

are the equilibrium number densities,
given in [15].

The interaction rates are compared with Hubble expansion in the left panel of Fig. 2. The decay

(Γ𝐷) and inverse decay
(
Γ𝐷

𝑌
eq
𝑁−
𝑌

eq
ℓ

)
rates are plotted in purple with the coupling strength ∼ 10−6.

The scattering rate
(

𝛾𝑆

𝑠𝑌
eq
𝑁−

)
for 𝑁−

1 𝑁
−
1 → 𝜌𝜌 is projected for various set of values for coupling

(of Eq. 8), consistent with neutrino oscillation study. In one-flavor approximation, the solution of
Boltzmann eqns (22) using the benchmark value 𝜖𝑁− = −5.5 × 10−4, is projected in the right panel
of Fig. 2 with the inclusion of decay and scattering rates. Once the out-of-equilibrium criteria is
satisfied, the decay proceeds slow (over abundance), 𝑌𝑁− does not trace 𝑌 eq

𝑁− (magenta curve) and
the lepton asymmetry (dashed curve) is generated. The obtained lepton asymmetry gets converted
to the observed baryon asymmetry through sphaleron transition, given by [16]

𝑌𝐵 =

( 8𝑁 𝑓 + 4𝑁𝐻

22𝑁 𝑓 + 13𝑁𝐻

)
𝑌𝐵−𝐿 . (23)

Using the asymptotic value of 𝑌𝐵−𝐿 as 8.5 × 10−10 from Fig. 2, the obtained baryon asymmetry is
𝑌𝐵 = − 28

79𝑌𝐵−𝐿 ∼ 10−10.
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5. Conclusion

We have investigated the effect of 𝐴4 modular symmetry in explaining the neutrino oscillation
phenomenology as well as baryon asymmetry of the universe through leptogenesis. The present
model includes three right-handed and three left-handed heavy fermion fields to explore the neutrino
phenomenology within the framework of linear seesaw. One of the important aspects of 𝐴4 modular
symmetry is that the Yukawa couplings transform non-trivially, which leads to a specific flavor
structure of the neutrino mass matrix. The flavor structure of heavy fermions gives rise to six
doubly degenerate mass eigenstates and hence, to explain leptogenesis, we introduced a higher
dimensional mass term for the right-handed fermions to generate a small mass splitting. We
obtained a non-zero CP asymmetry from the decay of lightest heavy fermion eigen state. Using
a specific benchmark of model parameters consistent with oscillation data, we solved coupled
Boltzmann equations to obtain the evolution of lepton asymmetry, which comes out to be of the
order ∼ 10−10, and hence, is sufficient to explain the present baryon asymmetry of the Universe.
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