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Blazars’ Spectral Energy Distribution (SED) consists of two components. In a leptonic inter-
pretation, the low-energy bump is due to synchrotron radiation from accelerated electrons while
the high-energy one is produced via inverse Compton scattering of the electrons by lower-energy
photons. These come from the synchrotron radiation produced by the same population of electrons
emitting at low energy (Synchrotron Self-Compton, SSC, scenario) or from an external photon
field. According to hadronic models, the high-energy emission is due to processes involving the
protons in the source. Multiwavelength (MWL) long-term monitoring of blazars is key since the
SED modelling over time allows the study of the radiative processes during different source states.
The blazar 1ES 1959+650 represents an ideal laboratory for that, being bright at all wavelengths
and located at low redshift (z=0.047) allowing its detection up to TeV energies. Also, it underwent
some flaring episodes in the past. Long-term monitoring of 1ES 1959+650 is ongoing under the
coordination of the MAGIC Collaboration. During the last years, the source is experiencing its
lowest state ever reached, mainly at very high energies (VHE; E > 100 GeV). This contribution
presents the MAGIC+MWL observations of the last 3 years, and the preliminary study focusing
on an SSC interpretation of the data.
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1. Introduction

Blazars are Active Galactic Nuclei (AGN) with a relativistic jet raised from the central black
hole that points in the observer’s direction. The blazar’ Spectral Energy Distribution (SED)is
dominated by relativistic jet emission which extends from radio to the TeV gamma-rays. The SED
of blazars is characterised by two bumps, the low-energy one peaking in the sub-millimetre to the
X-ray regime and the high-energy one at around MeV energies.

Well-established theoretical models predict that the low-energy part of the broadband SED,
from radio to X-rays, is produced by relativistic electrons accelerated in the magnetic field of the
jet, emitting synchrotron radiation. Depending on the frequency of the synchrotron peak (𝜈peak)
blazars are divided in low-, intermediate-, and high-synchrotron-peaked (LSP, 𝜈peak < 1014 Hz,
ISP, 1014 < 𝜈peak < 1015 Hz, and HSP, 𝜈peak > 1015 Hz, respectively) [1]. The origin of the
emission at the high-energy part of the SED is still discussed. According to leptonic models, this
can be due to inverse Compton (IC) interactions between the low-energy synchrotron photons with
the relativistic electrons responsible for the synchrotron peak (synchrotron self Compton, SSC).
In some sources, external regions provide the photon fields for IC interactions with the relativistic
particles. According to hadronic models instead, the hadronic component of the jet plays a not
negligible role in the radiation output of blazars at high energy. Both proton-photon interactions and
proton synchrotron mechanism are assumed as possible radiative processes producing the second
bump of the SED [11].

1ES 1959+650 is an HSP blazar classified as a BL Lac, namely blazars showing a featureless
optical spectrum with nearly no emission lines. The source is located at redshift 0.047 [9]. In
agreement with typical blazar’s behaviour, the emission of 1ES 1959+650 continuously varies
across all the bands of the electromagnetic spectrum with different timescales. Given its vicinity to
us and its brightness at all bands, the source has been intensively monitored from several facilities
and the monitoring data have allowed the interpretation of the SED at different stages of the source
lifespan.

The first outstanding event from 1ES 1959+650 was reported by the Whipple and High Energy
Gamma Ray Astronomy (HEGRA) experiments which detected two strong TeV flares separated by
one month from each other (e.g. [2]). The second of the two had no X-ray high-state counterpart,
wherefore it is called an orphan flare. The absence of X-ray emission simultaneous to that observed
at TeV challenges the predictions of the SSC model, according to which the very-high-energy (VHE,
E > 100 GeV) and X-ray emission are both produced by the same population of electrons. Even
more interestingly, the AMANDA neutrino observatory detection of two neutrinos simultaneously
with the orphan flare [4] could favour the hadronic scenario instead of the leptonic one, since high-
energy neutrinos are among the byproducts of proton-photon collisions. However, the statistical
significance of the detection is low and this makes the source an unconfirmed neutrino emitter
candidate.

Since 2015 1ES 1959+650 is monitored at VHE by the Major Atmospheric Gamma Imaging
Cherenkov (MAGIC) Collaboration. During the MAGIC monitoring, in 2016, a new extreme flaring
episode at VHE, with a photon flux exceeding 3 Crab units (CU), occurred [6]. This was followed by
flaring activity between 2017 and 2018 at lower flux levels. After that, the source entered its lowest
state at VHE observed so far in 2019, with a photon flux lower than 0.6 CU [7]. The interchange of
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VHE low and high states underlies modifications in the main players of the emission mechanisms,
such as the magnetic field and the electron energy distribution in an SSC scenario. The rich amount
of multi-year MWL data of 1ES 1959+650 has allowed the interpretation of the SED with different
emission mechanisms, with the SSC models being the most effective ones, but the overall scenario
is still unclear.

In this work, we focus on the MWL observations of 1ES 1959+650 from 2020 to 2022 and we
describe the analysis approach based on a SSC scenario.

2. MWL data

In this section, the MWL data are presented.

MAGIC The MAGIC Collaboration operates a two-telescope system which exploits the Imaging
Atmospheric Cherenkov Technique (IACT) to detect gamma rays. The MAGIC telescopes are
located about 2200 meters above sea level, at the Roque de los Muchachos observatory of La Palma
(Canary Islands). 1ES 1959+650 is observed over a zenith range from 35◦ to 66◦at maximum. In this
work we analyse three years of MAGIC observation, from June 2020 to August 2022, consisting of
a total of about 100 hours of good-quality data. About half of the observations have been performed
during the dark time, while the other half were carried out in the presence of the moon, requiring
a delicate analysis following [3]. The data reduction was performed with the MAGIC analysis
software MARS [13].

Fermi-LAT The Large Area Telescope (LAT) instrument, on board the Fermi Gamma-ray Space
Telescope, observes gamma rays with energies between 20 MeV and 300 GeV. Thanks to the LAT,
operating sky scans every three hours, continuous monitoring of gamma-ray sources is guaranteed.
In this work, we included Fermi-LAT data overlapping the MAGIC data periods. The energy range
adopted is 0.3-300 GeV and the temporal binning is 7 days.

Swift-XRT and UVOT The Neil Gehrels Swift Observatory operates the X-Ray Telescope (Swift-
XRT), which observes in the energy range of 0.2-10 keV, and the Ultraviolet Optical Telescope
(Swift-UVOT) which is equipped with ultraviolet and optical band filters (UVW1, UVM2, UVW2,
and U, B, V), observing at wavelengths from 170 to 650 nm. 1ES 1959+650 is regularly monitored
by the Swift satellite and the data are public. Both Swift-XRT and -UVOT data from June 2020 to
August 2022 are analysed in this work.

Tuorla and KAIT 1ES 1959+650 has been observed in the optical R-band using the 1.03 m
telescope at Tuorla Observatory, in Finland, as part of the Tuorla Observatory blazar monitoring.
Simultaneous monitoring in the unfiltered optical band, which correspond roughly to the R band,
is provided by the Katzman Automatic Imaging Telescope (KAIT).

OVRO At 15 GHz, 1ES 1959+650 is monitored by the single-dish radio telescope operated by
the Owens Valley Radio Observatory (OVRO) in California, US. OVRO observations and data
reduction are reported in [10].
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TELAMON The 100-m Effelsberg single-dish radio telescope monitors 1ES 1959+650 at multi-
ple frequencies, from 14 GHz to 42 GHz, as part of the TeV Effelsberg Long-term Agn MONitoring
(TELAMON). The monitoring program is described in [5].

VLBI The 43 GHz public very-long-baseline interferometry (VLBI) data of 1ES 1959+650 are
provided by the Boston University Blazar Group which leads the Large VLBA Project BEAM-ME.
The very-long-baseline array (VLBA) is an array of ten antennas located in America working as an
interferometer.

3. Variability and SED study

As typical for blazars, 1ES 1959+650 varies at all wavelengths with different timescales,
ranging from the timescale of hours, at VHE, to months, at the radio band. We characterise
temporal variations and structures present in the MWL light curve by exploiting the Bayesian
Blocks algorithm [8]. This algorithm is based on constructing optimal time intervals, so-called
blocks, within which the emitted light from the source can be assumed as constant. The subdivision
in blocks is based on a Bayesian approach. The algorithm starts with a first split in blocks of
minimum duration and then proceeds with the iterative merging of adjacent blocks. The process
continues until the introduction of a new block would not improve the model’s likelihood. After
multiple trials, the priors which enter the power law describing the number of time intervals (see
function (3) in [8]) are adjusted to represent the variability in each light curve. To do that, we
searched for a compromise between too few time bins that clearly combine different states and a
too large number of time bins that closely follow the trend of the observed light curves, thus not
providing any actual division of the data sample.

The large MWL dataset gives us the opportunity to investigate the temporal changes in the
SED of 1ES 1959+650. We apply the Bayesian Blocks analysis to divide the data into different time
bins in which to perform the SED modelling and interpretation. At high energy, we usually need to
integrate data due to low statistics. In this context, the Bayesian Blocks approach provides us with
a tool to identify which data can be merged avoiding the averaging of different source states.

The results at low energies, from the X-ray down to the optical band, show that the instruments
can detect finer structures with respect to the HE and VHE bands. This is due to the higher statistics
for the X-ray, UV and optical bands. The MWL light curve shows that the source is still in an overall
low state as in 2019. This is also confirmed by the Bayesian Blocks algorithm results. It appears
indeed that, despite the source dramatically varying at all wavelengths, no major outbursts as the
2016 one occurred over the period from 2020 to 2022. All the peaks are indeed almost consistent
with each other.

Multiple minor flares can be identified in the optical light curves in a time range of about 100
days, from MJD 59400 to MJD 59600. However, the flux intensity in this observing period is still
lower than the previous one (see the fifth panel of Fig 2 in [7]). A spectral variability at the X-ray
band has also been reported by [12], in agreement with our result. The XRT data analysed in [12]
partially overlap the time range of this work. The Fermi-LAT light curve has extremely low statistics
due to the 7-day binning. We performed the SED modelling in each of the time bins identified in the
MAGIC light curve using averaged spectra. At HE, we used the corresponding averaged spectrum
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while for the lower energy bands, we selected a one-day spectrum for each corresponding VHE
block. This is done to avoid the merging of different source states since the variability at lower
energies is detected on shorter timescales with respect to the VHE band.

We adopted a one-zone SSC model approach to describe the data. According to one-zone
models, broadband emission comes from a single spherical compact blob. In the radio band, the
extended jet emission is not resolved, it then represents a not negligible contribution to the total
emission. For this reason, radio data are not included in the SED modelling.

The preliminary results of the SED modelling analysis in most of the time bins indicate that the
low state of 1ES 1959+650 can satisfactorily be described by an SSC model, with model parameters
in agreement with previous studies.

4. Summary

We analysed the MAGIC+MWL data of the HSP BL Lac 1ES 1959+650, from 2020 to 2022. In
this period the source was experiencing its lowest state ever reached. Modelling the observational
points in the blazar SED plays a crucial role in distinguishing between leptonic and hadronic
models. Moreover, SED modelling enables us to deduce the physical parameters, such as those
ones describing the electron population’s energy distribution shape, under various interpretation
frameworks. Performing the SED analysis in a peculiar phase of the source, when it is in an overall
low state allows us to understand the emission processes in action and to compare the case with the
flaring states for which a few studies are available. In this work, we used a Bayesian Block approach
in order to split the VHE data into time bins in which to study the SED. Most of the time-binned
SEDs can be well described assuming an SSC scenario. In an upcoming publication, the details on
the SED results and on the alternative models assumed when an SSC model is not adequate will be
presented.
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