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Gamma-Ray Bursts (GRBs) are considered potential Very High-Energy (VHE) photon emitters
because the large amount of energy released and the strong magnetic fields involved in their jets.
However, VHE photons are not expected from bursts beyond a redshift of z > 0.1 because of the
attenuation of photons with the Extragalactic Background Light (EBL). The recent observation of
photons with energies of 18 and 251 TeV from GRB 221009A (z=0.151) last October 9th, 2022,
could be challenging what we know about the TeV-emission mechanisms and the EBL. Recent
works exploring candidates of dark matter, cosmic rays, and other alternatives appeared. In this
work, we explore possible scenarios regarding Axion-Like Particles (ALPs) and dark photon
mechanisms and discuss the implications in GRB energetics. We find that the ALPs and dark
photon scenarios can explain the 18 TeV photon but not the 251 TeV photon.
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GRBs are intense bursts of energy that emit radiation in the keV to MeV range. They consist
of a prompt emission and a longer-lasting afterglow phase observed across various energy bands.
GRBs are classified based on their hardness ratio and duration, with longer bursts associated with the
core-collapse of massive stars. The fireball model explains the prompt emission as the dissipation
of kinetic energy in internal shocks, and the afterglow phase arises from shocks generated by the
blast wave colliding with the surrounding medium. High-Energy (HE) and Very-High-Energy
emissions (> 10 GeV and > 100 GeV, respectively) are attributed to inverse Compton scattering of
lower-energy photons by electrons in different regions of the jet. The delayed appearance of VHE
emission is due to the shock’s approach to the deceleration radius and the decrease in y7y-opacity.
Notably, the H.E.S.S. and MAGIC observatories have detected GRBs emitting above 100-300 GeV
energies, which were attributed to inverse Compton processes [1, 2].

On October 9th, 2022, a highly luminous GRB (GRB 221009A) was detected by the Fermi-
GBM instrument [3], followed by observations from SWIFT [4] and other missions. The fluence
estimations varied among missions due to instrument saturation at high energies, but all reported
values on the order of 1072 erg cm™2. The counterpart of GRB 221009A was observed in various
bands, starting with X-rays [5] and later in the IR, radio, and optical bands [6—11]. Spectroscopic
observations estimated a redshift of z = 0.151 [12, 13]. Further observations of the afterglow were
conducted by multiple missions, including the James Webb Space Telescope [14] and the Hubble
Space Telescope [15]. Notably, the Large High-Altitude Air-Shower Observatory (LHAASO)
detected the GRB with energies above 500 GeV and a significance above 1000, marking the first-
ever detection of a GRB with energies above 10 TeV [16]. A report also mentioned a photon-like
air shower corresponding to a 251 TeV photon [17], although some PeV sources with consistent
locations were identified.

The observations of GRB 221009A raise questions about the possibility of inverse Compton
scattering to explain the HE photons detected. The significant attenuation of the flux of photons
at energies of 18 TeV and 251 TeV by the EBL suggests the consideration of alternative explana-
tions involving Dark Matter (DM) particles. The detection of VHE photons by LHAASO could
be explained by proton synchrotron emission from accelerated Ultra-High-Energy Cosmic Rays
(UHECRS) [18]. Some studies explore Lorentz Invariance violation effects on y — vy absorption
[19-21]. The nature of DM remains unknown, but candidates such as Weakly Interacting Massive
Particles (WIMPs), Axion-Like Particles, and dark photons are being considered in addition to
supersymmetric particles.

Although VHE emission from GRBs is commonly explained by inverse Compton scattering, the
combination of VHE emissions and a moderate redshift in GRB 221009A suggests the involvement
of more complex scenarios, potentially related to the production of DM particles [22-24]. The
details of how these particles are released, created, or accelerated within GRBs are not explored
here but are important for future investigations in this area.

In the analysis that this proceeding refers [25], we investigated the HE emission observed in
GRB 221009A, considering two main scenarios. We examined the microphysical parameters nec-
essary for the Synchrotron Self-Compton (SSC) emission to occur, ensuring that electron energies
remain below the Klein-Nishina limit. We assumed a surrounding medium density (77) greater than
1 cm™3, as typical for long bursts. We explored an alternative explanation involving the release of
DM during the burst. We calculated the minimum survival probability for photons originating from
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DM oscillations to reach Earth and investigate the parameter space for ALPs and dark photons as
potential DM candidates produced in the burst. Finally, we summarized our findings and provide
concluding remarks.

1. Discussion and Conclusions

We explore three scenarios that produce TeV photons. Based on our analysis within the fireball
scenario, specifically the SSC emission in the external forward-shock model, we find that extremely
small and improbable values of microphysical parameters are needed to avoid the Klein-Nishina
regime. Even without considering EBL attenuation, the resulting flux is insufficient to explain the
detection of an 18 TeV photon. Previous studies by [26] also modeled the afterglow observations
of GRB 221009A, taking into account the Klein-Nishina effect. They found bright emission in the
energy range of 0.1 to 10 TeV, peaking at 300 GeV. However, further calculations are required to
determine if the observations from LHAASO can be reproduced, considering the significant EBL
attenuation at 18 TeV. The forthcoming LHAASO light curve and spectra for GRB 221009A may
provide definitive insights into whether the SSC mechanism is appropriate. However, due to the
Klein-Nishina break energy being below 1 TeV, it is unlikely and impossible to explain the 251
TeV photon solely through SSC emission. Therefore, it remains uncertain if a population of TeV
photons is actually emitted by SSC alone in this burst, leading us to explore alternative scenarios
involving DM.

Then, we consider two DM scenarios, ALPs and dark photons. Previous studies by various
authors (e.g., [27], [28], and [29]) have considered scenarios where a population of photons is
transformed into DM and then reconverted into photons within the Milky Way. However, we adopt
a different approach in this paper. Instead of assuming a starting population of photons, we consider
a beam of light DM particles initially released by the GRB.

We identify DM candidates that fall outside of the excluded regions and have the potential to
explain the observation of TeV photons in GRB 221009A. In the case of ALPs, candidates with
lower masses and higher coupling coefficients have the capability to explain both the 18 and 251
TeV photons simultaneously, although they are located near the excluded region. On the other hand,
dark photons naturally offer an explanation for both photons, especially if the survival probability
is independent of the magnetic field. In such a scenario, the TeV photons would acquire spectral
characteristics from the dark photons. However, further investigations are necessary to determine
the extent to which the survival probability depends on the magnetic field.

We have examined the potential contribution of ALPs in different energy ranges. This includes
analyzing the parameter space to explain past observations of GRBs at hundreds of GeV, as well
as the recent observation of GRB 221009A by LHAASO. The presence of light-dark photons with
energies in the hundreds of GeV range could naturally account for these observations, whereas
ALPs exhibit a significant decrease in the allowed parameter space at lower masses and coupling
constants. The discovered survival probability values suggest that ALPs could still play a role in
explaining emissions at hundreds of GeV. However, a more comprehensive investigation is needed,
taking into account various dark matter spectra, including spectral lines. By comparing the results
with spectra observed beyond 10 TeV, we can better discern the mechanism required to generate
such HE emissions from extremely distant sources.
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We have determined the survival probabilities for our two DM scenarios, taking into account the
observable parameters of the burst. To account for unknown quantities, we have utilized conservative
values typically associated with long bursts. Our calculations encompassed the jet, host galaxy, and
Milky Way environments. It was discovered that approximately 30% of photons are lost due to ALP
conversion before reaching the Milky Way. This outcome can be attributed to the small size of the
jet and the weak magnetic field within the host galaxy. Considering the intergalactic magnetic field
yields negligible corrections. If dark photons remain as potential candidates, a thorough analysis is
required to assess the dependence of the survival probability on the magnetic field. Nonetheless, we
have demonstrated that dark photons could also serve as viable candidates, even though ALPs have
been the subject of more extensive research. Our conservative assumptions regarding the energy
absorbed by DM from the burst align with the fraction of energy attributed to the kinetic energy of
electrons responsible for emissions at lower frequencies. Consequently, the inclusion of DM would
not impact other aspects of the burst’s evolution. If DM exists in GRBs, the information contained
within the light curve will be essential for untangling potential theories elucidating the production
and release mechanisms of DM in GRBs, as well as deciphering the nature of the DM particle
involved.

Please refer to the publication by [25] for a comprehensive analysis of the topic.
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