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The Southern Wide-field Gamma-ray Observatory (SWGO) is a proposed facility for ground-
based gamma-ray astronomy. It will consist of an array of water Cherenkov detectors to detect
astrophysical gamma-rays mainly in the range of hundreds of GeV up to the PeV scale. To be
constructed in South America, it will feature an approximately two-steradian field of view and
a duty cycle close to 100%, which will complement the current generation of instruments by
extending survey coverage to the Southern Hemisphere. As part of the development of the SWGO
standard reconstruction framework, we employ a Monte Carlo template-based method to estimate
the properties of the primary gamma-ray (such as core position and energy). In this method, an
observed lateral amplitude distribution of a gamma-ray-induced air shower is fitted to the expected
probability distribution stored in the templates. We validate this approach by estimating the energy
performance for one of the currently investigated test array and detector unit configurations for
SWGO.
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1. Introduction

In the last decade, various experimental techniques for the precise measurement of astrophysical
gamma rays have been established. Direct detection methods usually investigate gamma rays in a
lower energy range, like for example, the Large Area Telescope (Fermi/LAT) that covers an energy
range of a few MeV to some hundreds of GeV [1]. Ground-based instruments are used at higher
energies since the particle flux becomes too small to be detected directly [2].

At these energies, impinging gamma rays interact with the nuclei in the atmosphere and
generate particle showers made up of mostly secondary electrons, positrons, and photons. Once
these secondary particles enter a detection unit that is filled with water, they produce Cherenkov
radiation [3] that can be observed with photomultiplier tubes (PMTs). The deposited signal and
timing measured in the detection units can be used for the shower reconstruction to estimate
important characteristics of the primary gamma ray, such as the energy or direction of the particle.
Current gamma-ray experiments that apply the water Cherenkov detection technique include the
High-Altitude Water Cherenkov (HAWC) Observatory which is located in Mexico [4] and the Large
High Altitude Air Shower Observatory (LHAASO) in China [5]. So far, experiments of this type
are limited to the Northern Hemisphere.

The Southern Wide-field Gamma-ray Observatory (SWGO) is a future instrument for ground-
based gamma-ray astronomy that will also use water Cherenkov detection. It is planned to be
constructed in South America and extend current-generation instruments to the Southern Hemi-
sphere. It will allow an approximately two-steradian field of view and a duty cycle close to 100%
and primarily study gamma rays in an energy range of hundreds of GeV up to the PeV scale1 [6]. To
get information about the energy, direction, and core position of those gamma rays, their initiated
particle cascades have to be reconstructed.

In this work, we describe the standard reconstruction method to reconstruct the energy and
core position for gamma-induced particle showers for SWGO, which is currently being developed.

2. Template-based reconstruction method

Based on the success of template-based reconstruction strategies in other experiments, such
as HAWC [7], we adapted the algorithm to the design of SWGO. An important advantage of the
template-based technique is that the signal measured in the detection units can be incorporated
directly in the reconstruction when filling the templates and does not have to be approximated [7].
This enables a stable reconstruction suffering from fewer fluctuations.

While the final layout of SWGO is not finalized, a few test configurations are available that are
currently being investigated [8]. For this work, we used one of the currently available test array
layouts. An image of the array layout can be found in Figure 1. The detection units consist of
double-layered cylindrical tanks. Each cell includes one PMT. The PMT in the upper cell is fixed
at the bottom of the cell, while the PMT in the lower cell is mounted to the top. The tanks have a
diameter of 3.82 m, the upper cell has a height of 2.5 m, and the lower cell of 0.5 m, respectively.
In this analysis, we limited ourselves to the use of the upper cells for the reconstruction. The array
consists of two zones, a dense inner zone, and a sparser outer zone. The radius of the inner zone is

1Updated information on the official SWGO website https://www.swgo.org/SWGOWiki/doku.php.
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Figure 1: Test array layout of SWGO with a dense inner zone where the tank units stand wall to wall and a
sparser outer zone.

Bin range Bin size
log10 (𝐸) 1.5 – 6.0 0.05
𝑋max 150 g/cm2 – 750 g/cm2 50 g/cm2

𝜃 0 ° – 50 ° 0.06 in cos(𝜃)

Table 1: Binning of the simulated gamma-induced air showers that were used to fill the templates.

160 m where the tanks are positioned so that their walls touch the neighboring tanks. The radius of
the outer zone is 300 m. The array is simulated at a height of 4.7 km above sea level.

We used simulations of gamma-induced air showers in an energy range of a few tens of GeV
up to 1 PeV that were thrown in a radius of 1.5 km around the array center. The first interaction of
the primary gamma ray as well as the shower development in the atmosphere was simulated with
CORSIKA (version 7.740) [9]. The interaction of the secondary particles with the water tanks was
simulated with GEANT4 (version geant4-10-00-patch-04) [10].

The simulated showers that are used to fill the templates are binned in energy 𝐸 , maximum
shower depth 𝑋max and zenith angle 𝜃 (see Table 1). Both the information of a single tank that
measured charge as well as the information that no signal was measured are used. After filling the
templates, we applied a smoothing using a Gaussian distributed weighted sum. An example of a
smoothed template is shown in Figure 2.

The 2D histogram of Figure 2 shows the probability distribution of measuring a certain number
of photoelectrons (𝑁pe) at a particular distance 𝑟 between each tank and the shower core in the shower
plane. Note that 𝑁pe is a decimal number since it is processed with a jitter to represent the jitter
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Figure 2: Monte Carlo generated template binned in 𝐸 = 7.1− 8.0 TeV, 𝑋max = 400− 450 g/cm², and zenith
angle 𝜃 = 0 − 19 °. The probability 𝑃 of measuring a specific number of photoelectrons for each distance 𝑟

between the core and the tanks in the shower plane is plotted in the 2D histogram. The probability 𝑃0 that
no photoelectron is measured for a specific distance 𝑟 is plotted in the bottom panel.

of the electronics in real operations. It is thereby possible to achieve slightly negative values for
log(𝑁pe). The bottom panel of Figure 2 shows the probability 𝑃0 that no signal was measured in a
tank at a distance 𝑟 from the shower core in the shower plane, which is also used in the reconstruction
to constrain the likelihood.

We implemented the model in the current SWGO standard reconstruction chain to reconstruct
the energy and core position of the particle shower, where we measure the signal in each detector
unit and fit this shower footprint against the probability functions of the templates. For the fit, we
minimize the negative log-likelihood:

log (𝐿) = −2
∑︁
𝑖

log
(
𝑃
(
log10

(
𝑁pe

)
𝑖
, 𝑟𝑖 , 𝑋max, 𝐸 |𝜃, 𝜙

) )
. (1)

In this case, 𝑃 is the individual tank probability that depends on the measured signal log10
(
𝑁pe

)
𝑖
,

the distance 𝑟𝑖 between the shower core and the tanks in the shower plane, the energy 𝐸 and the
maximum shower depth 𝑋max of the reconstructed particle shower. The incoming zenith and azimuth
angles 𝜃 and 𝜙 were taken from the preliminary angular estimation that is applied beforehand using
a plane fit. The starting values for the minimization of the core position are taken from a first rough
core estimate with a center of mass estimation. The seeds for the 𝐸 and 𝑋max are taken from lookup
tables.

Figure 3 shows an example reconstruction of a gamma-ray shower. The true values of the
primary gamma ray were 𝐸true = 6.8 TeV, 𝑥true = −2.2 m, 𝑦true = −92.7 m, 𝜃true = 13.5 ° and
𝑋max,true = 427 g/cm2. The result for the core reconstruction is visualized in Figure 3a. Each
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Figure 3: (a) Likelihood surface for the reconstruction of the shower core of an example event going from
green (maximum) to purple (minimum). The different colored stars show the position of the reconstructed
(red) and the true shower core (orange) on the array. (b) Likelihood values for the reconstruction of the
energy of the same example event with the true (orange) and reconstructed (red) energies.

black dot represents the center of a tank, and the stars show the true core position (orange) and
the reconstructed core position (red), respectively. Because the reconstructed core (𝑥reco = −2.2 m
and 𝑦reco = −92.6 m) of this event agrees excellently with the true core position, the orange star is
barely visible. The visible contours ranging from green (maximum) to purple (minimum) denote
the “likelihood surface” for the region around the reconstructed core, giving an estimate for the
reconstruction uncertainty. In Figure 3b, we present the likelihood values in detail of and around
the reconstructed energy 𝐸true = 7.4 TeV. Again, the reconstructed value lies in the minimum of the
likelihood values.

3. Energy estimation for one of the current test arrays

To validate the implementation of the method, we estimate the performance of the energy
reconstruction of one of the current test arrays of SWGO. We use showers with a zenith angle below
45 ° whose true core fell directly on the array. In addition, some loose quality cuts were applied
for the reconstruction. To examine the reconstruction performance, we show the reconstruction
bias in Figure 4a and the energy resolution in Figure 4b. The used energy bias and resolution are
defined as the mean and the RMS of the distribution of log10 (𝐸reco) − log10 (𝐸true). We compare
the results for the test array with ones from HAWC [7] and ones that were estimated in the Southern
Gamma-ray Survey Observatory (SGSO) white paper [6], which represents a first estimation of the
future performance of SWGO. Both the energy bias as well as the energy resolution show promising
results. At around 10 TeV an energy resolution of around 30% can be attained. Nevertheless, note
that the reconstruction is still under development, and the final results can only be evaluated once
the final array configuration of SWGO is fixed.
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Figure 4: First results for the energy bias (a) and energy resolution (b) of an SWGO test configuration with
results from HAWC [7] and the SGSO white paper [6] as a comparison. The bias and the resolution are
calculated as mean and RMS of the distribution of log10 (𝐸reco) − log10 (𝐸true).

4. Summary and outlook

The standard reconstruction chain for the future SWGO is currently in development. One of
the important steps within this chain is the implementation of a module for reconstructing particle
energies. We applied a template-based method for the reconstruction of the energy and core
position of gamma-induced particle showers for one of the current test arrays of SWGO. For this,
we created a set of templates using Monte Carlo simulations. The observed lateral distribution
function of a reconstructed shower is then fitted to the generated templates using a negative log-
likelihood approach to find the best matching parameters for the core position and the energy. We
validated the reconstruction by estimating the resolution of an example test array. The found energy
bias and energy resolution of the investigated test array are very encouraging and similar to the
performance estimated by the SGSO white paper [6]. We successfully implemented this method in
the SWGO standard reconstruction framework offering a performance estimation of other SWGO
test configurations. Once the final array configuration of SWGO is fixed, this method can be applied
to estimate the final performance for the energy reconstruction of SWGO.
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