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We report on the cosmic ray mass composition measured by the Telescope Array Low-energy
Extension (TALE) hybrid detector. The TALE detector consists of a Fluorescence Detector (FD)
station with 10 FD telescopes located at the TA Middle Drum FD Station (itself made up of 14
FD telescopes), and a Surface Detector (SD) array of scintillation counters. The SD array consists
of 40 counters with 400 m spacing and 40 counters with 600 m spacing. The FD station, with a
total of 24 telescopes, overlooks the SD array and provides sky coverage with an elevation angle
range of 3◦ to 59◦. In this contribution, we will present the latest result of the cosmic ray mass
composition measurement in the energy range from 1016.5 eV to 1018.5 eV using almost 5 years of
TALE hybrid data.
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1. Introduction

The Telescope Array located around 39◦ S, 113◦ W has the largest cosmic ray observatory
in the northern hemisphere, designed to detect ultra high energy cosmic rays. The main part of
the experiment consists of a SD array and three FD stations that overlook the SD area. The TA
SD deployed 507 scintillation counters in a square grid with 1200 m spacing, covering a total
of ∼ 700 km2 area on the ground. Each surface counter has two layers of a plastic scintillators
each with an area of 3 m2 and a thickness of 1.2 cm. The scintillation light produced by the
charged particles energy deposition are guided to the photomultipliers that connected from each
layer through wavelength shifting fibers [1]. The three TA FD stations are located at Black Rock
Mesa (BRM), Long Ridge (LR), and Middle Drum (MD). The stations have a viewing range of 3◦

to 31◦ in elevation A fluorescence telescope of TA is composed of a segmented spherical mirror
and a camera of 256 hexagonal photomultipliers, with a field of view is 1◦ × 1◦ [2].

In addition to the main TA experiment, the Telescope Array Low-energy Extension(TALE),
located at the north part of the site, is aimed at measuring the very high energy cosmic rays above
1016 eV to reveal the nature of the transition from galactic to extra-galactic cosmic rays. The TALE
detector consists of one FD station with ten fluorescence telescopes and an array of 80 scintillation
surface detectors, which were deployed to cover a total area of approximately 20 km2. The TALE
FD began operation in 2013 at the MD station. The ten fluorescence telescopes used in TALE were
refurbished from components previously employed by the HiRes experiment [3]. These telescopes
have a field of view ranging from 31° to 59° in elevation, directly above the field of view of the MD
telescopes. The TALE SD consists of 40 scintillation counters with 400 m and 40 counters with
600 m spacing, and started observation from 2017. In addition, an external trigger from the TALE
FD to the TALE SD to detect low energy cosmic ray showers, so-called hybrid trigger system,
was installed in 2018. The TALE detector configuration is shown in Fig. 1. The full details of the
detectors are found in [4–6]. We will present the latest result of the cosmic ray mass composition
measurement using almost 5 years of the TALE hybrid observation data including the MD telescope
data, for which the deeper 𝑋max showers can be detected by the lower field of view. The combination
of sky coverage by MD and TALE FD provides more uniform 𝑋max acceptance for interest energy
range.

2. Event Reconstruction

In the energy range of just below 1017 eV, we use the TALE FD as an Imaging Air Cerenkov
Telescope (IACT) to extend the energy threshold of the detector down to ∼ 1015 eV. The Cherenkov
light produced by a shower has the same characteristic as fluorescence light, being directly pro-
portional to the number of shower particles for any given point in the shower development. This
property means that the observed Cherenkov signal can be used to infer the shower properties
(energy and 𝑋max) in a similar way to how the fluorescence light is used. A significant difference
between Cherenkov light and fluorescence light is that the Cherenkov light emitted by the shower
particles is strongly peaked forward along the shower direction, and falls off rapidly as the shower
viewing angle changes while the fluorescence light is emitted isotropically. As a result, Cherenkov
events are seen only if the shower geometry with respect to the detector is such that the shower
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Figure 1: Left: The layout of the TALE detector. Open square boxes represent the locations of the TALE SD
counters and a small filled circle corresponds to the MD / TALE FD station. The arrows represent azimuthal
viewing ranges of both FDs. Top-Right: A deployed SD in the field. Bottom-Right: The photograph of
TALE telescopes in the FD station.

is moving towards the detector (viewing angle ∼ 10◦ or smaller), and are observed much faster
(total event duration and shower image are much shorter) than fluorescence dominated events seen
by main TA hybrid detector where energies above 1018 eV. Due to the above reasons, the lower
energy events seen by Cherenkov light are processed for reconstruction by the Profile-Constrained
Geometry Fit (PCGF) that simultaneously reconstructs the shower geometry and the shower profile,
originally developed by the HiRes collaboration [7]. This method scans over all possible shower
geometries compatible with the arrival times of photons at individual pixels of the FD camera and
for each such geometry calculates a trial shower profile in the atmosphere. In this work, the possible
shower geometries are provided by a process of the hybrid geometry calculation that combines
the timing information from the FD and SD to constrain the arrival time and impact point of the
shower at the ground. The shower profile fitting in given shower geometry uses the Gaisser-Hillas
parameterization formula [8]

𝑁 (𝑥) = 𝑁max

(
𝑥 − 𝑋0

𝑋max − 𝑋0

) 𝑋max−𝑋0
𝜆

exp
(
Xmax − x

𝜆

)
, (1)

where 𝑁 (𝑥) is the number of charged particles at a given slant depth, x, 𝑋max is the depth of shower
maximum, 𝑁max is the maximum number of particles at 𝑋max, 𝑋0 is the depth of the first interaction,
and 𝜆 is the interaction length of shower particles. The best expectation of the shower geometry
and longitudinal profile is chosen.

3. Monte Carlo Simulation and Data / MC Comparison

We run the Monte Carlo simulations to evaluate our detector performance and reconstruction
resolution. In this work we generated three primary cosmic rays particles; proton, nitrogen, and
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iron based on the QGSJetII-04 [9] hadronic interaction model. Equal numbers of events were
generated for each primary type. The generated MC follows a broken power law spectrum in which
the spectrum index is -2.9 below 1017.1 eV and is -3.2 above 1017.1 eV, where each parameter
comes from observable values by the TALE FD monocular spectrum measurement [5]. All of the
calibration factors with time dependence are considered in the SD and FD detector simulations.
All reconstructed events are subjected to the quality cuts summarized in Table. 1. The criteria were
divided into two parts by the contribution of the flux of fluorescence and Cherenkov light from the
air shower due to different characteristics of the fluorescence/Cherenkov dominated events. The
obtained shower parameter resolutions energies above 1016.5 eV are 30 g/cm2 in 𝑋max and 10 %
in energy (Fig. 2). In addition, Data/MC comparisons were performed to verify that the observed
events are well reproduced by our MC simulations, as shown in Fig. 3. The same quality cuts were
applied to the data and the MC events.

Variable CL FL
No saturated PMTs in FD applied
𝑋max bracketing cut applied
Angular track-length [deg] > 6.5◦ -
Event duration [ns] > 100 ns -
# of PMTs > 10 -
# of Photo-electrons > 1000 > 2000

Table 1: we define events of which fractional contribution of Fluorescence Light (FL) to the total signal
exceeds 0.75 as fluorescence events, and events of which fractional contribution of FL to the total signal less
than or equal to 0.75 as Cherenkov Light (CL) events.
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Figure 2: Reconstruction resolutions of the shower maximum 𝑋max, and the shower energy 𝐸 , respectively.
The 𝑋max resolutions for each primary are shown in the top panels, and the energy resolutions are in the
bottom panels.
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Figure 3: Data / MC comparisons. From top left to right bottom, the number of PMTs, the number of
photo-electrons, the impact parameter 𝑅𝑝 , the shower inclination angle in the shower detector plane, 𝜓 are
shown, respectively. The black points with error bars show the data, while the proton/nitrogen/iron MC are
shown by the red/green/blue histograms. The MC distributions have been normalized to the same number of
entries as the data.

4. Data Analysis

We present the preliminary results of the cosmic rays mass composition in the energy range
from 1016.5 eV to 1018.5 eV measured with the TALE hybrid data. The result for the mean of the
shower maximum, ⟨𝑋max⟩, and the width of the observed 𝑋max distributions, 𝜎(𝑋max), as a function
of the shower energy are presented in Fig. 4. For the comparison, the pure proton, pure nitrogen, and
pure iron predictions calculated by our Monte-Carlo simulation are also shown beside the observed
ones. In the left panel of Fig. 4, the observed elongation rate shows clearly a break, where the
energy is just above 1017 eV. The elongation rate before the break energy is 23 ± 5 g/cm2/decade
and after the break energy is 98 ± 5 g/cm2/decade, while the pure composition assumptions are
around 60 g/cm2/decade, respectively. On the other hand, the 𝜎(𝑋max) is compatible with or wider
than pure proton assumption in whole energies.

We also estimate the primary fraction of cosmic rays using TFractionFitter [10, 11]. Data 𝑋max
distributions were divided into each energy bin with a width of 0.1 in log10(E/eV) below 1017.9
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eV, for 0.2 in log10(E/eV) up to 1018.5 eV. These distributions were fitted using those of MC ones
containing three primaries. Fit results are shown in Fig. 5. The nitrogen fraction becomes dominant
at 1016.7 eV, then iron fraction follows at higher energies as expected by the Peters cycle [12] while
the low contribution of proton primary at around 1017 eV.

Figure 4: Top: ⟨𝑋max⟩ as a function of shower energy, measured by using 5 years of the TALE hybrid data.
Bottom: 𝜎(𝑋max) as a function of shower energy. For both panel, the proton, nitrogen, and iron MC rails are
also shown for comparison.
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Figure 5: Primary cosmic ray fraction estimated by fitting of MC distributions with the hadronic interaction
model of QGSJetII-04. From top to bottom, estimated proton fraction, nitrogen, and iron one are displayed.
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5. Conclusion

We reported on the preliminary result of the mass composition measurement obtained by using
5 years of TALE hybrid data. In this contribution, we presented the measured ⟨𝑋max⟩ and 𝜎(𝑋max)
as a function of primary energy. The ⟨𝑋max⟩ elongation rate shows a change in the slope at the energy
just above 1017 eV. This break in the elongation rate is likely correlated with the observed break
in the cosmic ray energy spectrum by the TALE FD monocular measurement [5]. Furthermore,
we estimate the primary cosmic rays fraction by fitting the data 𝑋max distributions to the MC ones.
These results are consistent with a picture that the transition of the origin of the galactic cosmic rays
to the extra-galactic cosmic rays is around "2𝑛𝑑 knee", at around 1017 eV, with which the changing
of the elongation rate in the mean 𝑋max while a wider 𝑋max distribution at these energies due to the
mixed composition of heavier galactic cosmic rays and lighter component of extra-galactic one.
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