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We present a method for estimating the number of counts as a function of time of a counter with
sub-units for which the expected count densities are the same. This is typically given in arrays of
photo-multipliers in neutrino experiments, as well as in the segments of one segmented counter
for indirect detection of cosmic rays. We take the latter as study case, and simulate and compare
the performance of our algorithm in a detector like the Underground Muon Detector of the Pierre
Auger Observatory. By properly accounting for the dead time of the counter, we provide estimates
of the counts as a function of time to a single time-bin resolution.
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1. Introduction

In this work, we present a new, general method for counting particles that hit a counting
detector with counting sub-units [1]. The method can be applied: (1) if the signal processing of
each sub-unit is based on a discrimination threshold (rather than on the signal amplitude or charge)
and is thus susceptible to the effect of unresolved particles, (2) if there is a subset (> 1) of counting
sub-units that expect the same particle rate, and (3) if not all the sub-units of the subset have signal
simultaneously (i.e. if there is no saturation). Even when individual particles cannot always be
time-resolved, this method can be used for estimating particle counts as a function of time.

We find a clear case for applying our method in the Underground Muon Detector of the Pierre
Auger Observatory [2]. Therefore we now discuss the significance of this method in the context of
cosmic ray physics. We delay the discussion on other possible applications of the counting strategy,
like neutrino experiments, to Sec. 5.

Despite extensive research, the origin of ultra high-energy cosmic rays (UHECRs) remains
to be understood. To unravel this, cosmic rays are primarily investigated using three observables:
the energy spectrum, the distribution of arrival directions, and the mass composition as a function
of energy [3]. The depth of the shower maximum and the number of muons are two extensive
air-shower (EAS) observables that are particularly sensitive to the mass composition [4]. Buried or
shielded detectors are capable of detecting muons model-independently, as other EAS particles are
largely absorbed by the earth or shielding material above the detector.

In this work we simulate a detector like the Underground Muon Detector (UMD) of the Pierre
Auger Observatory and use it as a test base for comparing various counting methods. A UMD
module has 64 plastic scintillator strips with wavelength-shifting optical fibers optically connected
to silicon photo-multipliers (SiPMs) [2, 5].

2. Counting methods

Counting particles on a segmented detector can be compared to the statistical problem of
counting “balls in boxes”1. In the latter, a finite number of balls (the particles) are randomly
uniformly allocated in a finite number of boxes (the detector segments). After one realization, each
box can contain 0 (with no pattern match), or ≥ 1 balls (with pattern match or occupied). The
number of occupied boxes defines in this way the occupancy.

In a muon counter, the balls would represent the number of muons impinging on the counter
𝑁𝜇. We assume that 𝑁𝜇 originates from one realization of a Poisson distribution with mean 𝜇. The
latter is the average number of particles expected on the counter. 𝜇 depends on the energy, primary
mass, zenith angle, and distance to the shower axis. Notice the difference between 𝑁𝜇 and 𝜇: 𝑁𝜇

is the number of particles actually impinging the detector, a property of the event, while 𝜇 is the
average number, a property of the EASs. Both quantities, 𝑁𝜇 and 𝜇, can be independently used to
reconstruct the muon lateral distribution function [4, 7, 8].

There are two questions that the counting methods intend to address: (1) Knowing the oc-
cupancy, what is the estimated number of impinging particles, 𝑁𝜇? (2) Assuming that 𝑁𝜇 is a
realization of a Poisson distribution of mean 𝜇, what is the estimated mean number of particles 𝜇?

1This is also referred to as “classical shot problem” or “classical occupancy problem” [6].
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The total number of pattern matches across all scintillator strips would be the simplest estimate
of both 𝑁𝜇 and 𝜇. However, it is obvious that the pile-up effect would bias the estimates, as one
pattern match can account for multiple muons. Therefore, the objective of these counting methods
is to offer a pile-up-unbiased estimate of 𝑁𝜇 and 𝜇 using the information from the event trace.

We now describe the four counting strategies considered in this work.
The infinite window method was the one utilized by the AGASA collaboration (see for example

Ref. [9]). It is the simplest counting method in the sense that it does not use the temporal structure
of the event trace. It only makes use of the number of occupied channels 𝑘 (the occupancy), which
is computed as [4, 7, 10]

𝑘 =

𝑛𝑠∑︁
𝑖=1

Θ(𝑚𝑖), (1)

where 𝑛𝑠 is the number of active segments of the detector, 𝑚𝑖 is the number of pattern matches
starting at the 𝑖-th channel, and Θ is the Heaviside step function (Θ(𝑚𝑖) = 0 if 𝑚𝑖 = 0, else
Θ(𝑚𝑖) = 1).

The number of muons impinging on a scintillator bar follows a Poisson distribution of mean
𝜇/𝑛𝑠 (this is deducible just from the definition of 𝜇). Therefore, the probability of a channel
being empty is 𝑞 = exp(−𝜇/𝑛𝑠), and the probability of a channel being occupied is 𝑝 = 1 − 𝑞

[7, 8]. The probability of having 𝑘 occupied channels (successes) out of 𝑛𝑠 channels (trials) given 𝜇

(which determines the success probability) follows a binomial distribution 𝐵(𝑘 | 𝜇) =
(𝑛𝑠
𝑘

)
𝑝𝑘𝑞𝑛𝑠−𝑘 =(𝑛𝑠

𝑘

)
𝑒−𝜇 (𝑒𝜇/𝑛𝑠 − 1)𝑘 [7, 8]. This can also be seen as the likelihood of 𝜇 given 𝑘 occupied channels.

For 𝑘 < 𝑛𝑠 (no saturation) the maximum likelihood estimator of 𝜇 is [7, 8]

𝜇 = −𝑛𝑠 ln
(
1 − 𝑘

𝑛𝑠

)
. (2)

Furthermore, the probability of 𝑘 channels being occupied given 𝑁𝜇 impinging muons and 𝑛𝑠

scintillation bars is given by the classical occupancy distribution Occ (𝑘 | 𝑁𝜇, 𝑛𝑠) =
(𝑛𝑠
𝑘

) 𝑆 (𝑁𝜇 ,𝑘 )
𝑛
𝑁𝜇
𝑠

∀ 𝑘 ∈
Z | 1 ≤ 𝑘 ≤ 𝑛𝑠 [10], where 𝑆(𝑁𝜇, 𝑘) are the Stirling numbers of the second kind (see also Ref. [6]).
A good approximation of the maximum likelihood estimator of 𝑁𝜇 is (see Refs. [4, 10])

𝑁𝜇 = ln
(
1 − 𝑘

𝑛𝑠

) /
ln

(
1 − 1

𝑛𝑠

)
. (3)

It is easy to see that Eq. (2) and Eq. (3) are very similar, and actually 𝑁𝜇 → 𝜇 when 𝑛𝑠 → ∞.
The module is said to be saturated when 𝑘 = 𝑛𝑠, and in that case both 𝜇 and 𝑁𝜇 tend to infinity.

The next tested method is the N-bin window. First introduced in Ref. [8], this method has been
used for analyses of PMT data of the Auger UMD in Refs. [11, 12]2. In this method, the detector
trace is divided into time windows of N bins, where N is the number of bins of a single-muon
pattern (in the case of SiPMs of the Auger UMD, N = 12 time-bins of 3.125 ns each). For each
𝑗-th window, the number of occupied channels 𝑘 𝑗 , the estimated number of muons 𝑁𝜇, 𝑗 , and the
estimated average number of muons 𝜇 𝑗 are computed using Eqs. (1,2,3) respectively. Then the total

2We show in Sec. 4 that this counting method introduces significant biases. In the analyses of Refs. [11, 12], these
are compensated for, at least to first order, by correcting them against simulations in a subsequent stage.
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𝑁𝜇 and 𝜇 are estimated from the sum over the window-wise estimates:

𝑁𝜇 =

𝑛𝑤∑︁
𝑗=1

𝑁𝜇, 𝑗 , (4)

𝜇 =

𝑛𝑤∑︁
𝑗=1

𝜇 𝑗 , (5)

where 𝑗 runs over the 𝑛𝑤 number of windows of the trace.
Furthermore, we introduce the N-bin centered window method, only to enlighten the origin

of biases in the N-bin method. It is fairly similar to the latter, but it positions the windows such
that one of the windows has its center aligned with the signal peak. For simplicity, we explain the
method using the case of the 12 time-bin windows corresponding to SiPMs of the Auger UMD.
The idea is the following: We know that there exists at least one 12 time-bin window 𝑗∗ in which
the number of occupied channels 𝑘 𝑗 is maximum. If there is more than one window, we take the
one that starts earliest. To find it, we slide a 12 time-bin window over all the trace, computing
𝑘 𝑗 for every 𝑗-th possible window. The “centered” window is the one that starts earliest such that
𝑘 𝑗∗ = max 𝑗 (𝑘 𝑗). This window determines the way to complete the partition of the trace into 12
time-bin windows. Having determined the way to partition the trace, 𝑁𝜇 and 𝜇 are computed as in
Eqs. (4,5).

This leads us to the counting method that we developed, the 1-bin window. This method
makes use of the signal’s entire temporal structure rather than using the trace as a whole or in
many-bin windows. For this, we compute at each 𝑗-th time-bin of the trace, besides the number of
occupied channels 𝑘 𝑗 , the number of inhibited channels 𝑛inhib, 𝑗 . The latter represents the number
of channels with a pattern match that started in a previous time-bin. We refer to these as inhibited
channels because it would be impossible to resolve a muon if it fell within that time bin. In essence,
inhibited channels are the same as dead channels. In the analogy of balls in boxes, channels that
are occupied can be treated as having fewer available boxes. The number of non-inhibited channels
is 𝑛𝑠 − 𝑛inhib, 𝑗 .

However, having less available (non-inhibited) channels reduces the detector area, which leads
to a smaller number of detectable muons. The usable detector area varies with time. To obtain
the number of muons that would be observed for a constant detector area equal to the active area,
it is necessary to multiply by the number of active segments 𝑛𝑠 and to divide by the number of
non-inhibited segments 𝑛𝑠 − 𝑛inhib, 𝑗 . Therefore, we compute

𝜇 𝑗 = 𝜇 𝑗 = −𝑛𝑠 ln
(
1 −

𝑘 𝑗

𝑛𝑠 − 𝑛inhib, 𝑗

)
, (6)

and
𝑁𝜇, 𝑗 =

𝑛𝑠

𝑛𝑠 − 𝑛inhib, 𝑗
× ln

(
1 −

𝑘 𝑗

𝑛𝑠 − 𝑛inhib, 𝑗

) /
ln

(
1 − 1

𝑛𝑠 − 𝑛inhib, 𝑗

)
, (7)

for each bin of the trace. The overall 𝑁𝜇 and 𝜇 are computed as their sum over all the bins of the
trace (this is, as in Eqs. (4,5), with the number of windows 𝑛𝑤 being equal to the number of bins in
the trace).
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3. Simulations

In an effort to reproduce a realistic scenario, we simulate the electronics response of the
counter mode of the Auger UMD. The complete technical description can be found in Ref. [1].
The detector’s model follows Ref. [13]. Based on this model, we derive an analytical solution for
the detector response to one or more muons. We disregard electronic noise, which is irrelevant
for evaluating the counting methods. It is also relevant to mention that we do not account for the
effect of one muon being detected in two scintillator strips, because this effect is a separate source
of bias that can be corrected afterwards [11]. Figure 1 shows the impinging muons, binary traces,
and matched patterns, and applied 1-bin counting method for an example simulated module-level
event. Only channels with signal are shown. We can find pile-up muons in channel 16.

1210 1215 1220 1225 1230 1235 1240
t/3.125 ns

9
16
19
23
28
29

C
ha

nn
el

1 1 1 1 1 1

1 1 1 2 3 4 4 4 5 5 5 4 4 4 4 3 2 2 2 1 1 1 1 1 1

k

Ndead

µ
Trace
Match

Figure 1: Example of a simulated signal in a UMD module. Muons (circles) impinge at a given time (x-axis)
on the segments of the module, and in their corresponding channel (y-axis) we find a binary signal (lines).
These are matched to a single-muon pattern (rectangles). The occupancy 𝑘 and number of inhibited channels
𝑛inhib at each time-bin illustrate how to apply the 1-bin counting method.

There are two detector effects that cause biases in 𝑁𝜇 and 𝜇, which are not related to pile-up,
nor are intrinsic to the counting methods. The first one is a detector inefficiency, and it happens
when a muon does not create a signal that matches the single-muon pattern. It causes undercounting
in all methods to the same extent. In Ref. [1] we showed this effect is below 4 %.

The second source of bias is due to an undershoot in the electronics. It can happen that
the signal of a later muon mounts on the undershoot of a previous one, such that the later muon
is not matched to a single-muon pattern. The infinite window method is insensitive to this bias
because it is enough to match the early muons in the channel to tag it as occupied during the whole
trace. All other methods are sensitive to this effect to the same extent. The pattern matches lost
due to undershoot can amount from 0.1 % for low-energetic, inclined air-showers, to 3.3 % for
high-energetic, vertical air-showers, as proven in Ref. [1].

We generated a library of∼7600 EASs of proton and iron primaries, using EPOS-LHC [14] and
UrQMD [15, 16] as high- and low-energy hadronic interaction models, respectively. The showers
were generated using CORSIKA v7.7402 [17]. We used primary energies uniformly distributed
in 17.2 ≤ log10(𝐸/eV) ≤ 18.4 and zenith angles in 0◦ ≤ 𝜃 ≤ 48◦ corresponding to an isotropic
distribution. Further details can be found in Ref. [1].
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4. Results

Although the general behavior also applies to 𝜇, we compare the performance of the different
counting methods only for 𝑁𝜇 for the sake of simplicity. The difference is that the resolution in the
estimation of 𝜇 is sensitive to Poissonian fluctuations in 𝑁𝜇. When 𝑁𝜇 is significantly smaller than
the total number of segments, these become dominant. In contrast, when 𝑁𝜇 is high, the detector
segmentation predominates, resulting in identical resolutions for the estimators of 𝑁𝜇 and 𝜇 [7].

We define the relative difference between the estimated and input (or true) number of muons
as 𝜀 = (𝑁𝜇 − 𝑁𝜇)/𝑁𝜇.

Figure 2 shows the relative bias ⟨𝜀⟩ (left panel) and the relative resolution 𝜎(𝜀) (right panel)
of each counting method. The error bars on the mean 𝜀 represent the standard deviation of the
mean. The error bars of the standard deviation of 𝜀 were calculated using bootstrap. Compared
to the other strategies, the N-bin strategy stands out for having a considerably larger relative bias
(more negative) and larger standard deviation. Additionally, the N-bin centered, infinite window,
and 1-bin strategies all perform roughly similarly in terms of mean relative bias: for an input of
𝑁𝜇 ≲ 200, they all have a small, mostly negative bias contained within ±10 % that is dominated
by detector effects, presenting an increasingly negative bias above that when the detector starts to
saturate. For the N-bin and N-bin centered strategies ⟨𝜀⟩ tends to more negative values because
of not considering inhibited channels. The 1-bin method behaves similarly to the infinite window
method with a smaller detector, however because of the undershoot effect, it tends to slightly more
negative values. The bias in the infinite window strategy is the smallest, yet it is not null. We notice
that the 1-bin strategy’s precision is roughly similar to or greater than that of the other strategies
when we compare the standard deviations.

0 100 200 300
Nµ

−0.4

−0.3

−0.2

−0.1

0.0

〈ε
(N

µ
)〉

1-bin
Infinite
N-bin centered
N-bin

Figure 2: Relative bias (left) and relative standard deviation (right) in the reconstructed number of muons
as a function of the input number of muons for the four counting methods considered.

As mentioned before, the 1-bin counting method developed in this work allows for the recon-
struction of the muon time structure. Figure 3 shows an example of the impinging muons, the
average input number of muons as seen by the detector, and the estimated average number of muons
computed using the 1-bin strategy, all as a function of time. The input muons as a function of time
correspond to the mean muon time structure of proton showers with 18.0 ≤ log10(𝐸/eV) ≤ 18.2
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and 𝜃 ≲ 18◦ (sin2 𝜃 ≤ 0.10) at 450 m from the core. Between the input muons and the muons seen
by the detector there is a time delay, which amounts to the propagation of the photons in the optic
fiber, and to the scintillator and optic fiber delays.
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Figure 3: Input number of muons (dotted line), input number of muons as seen by the detector (dashed
line), and reconstructed number of muons (solid line) using the 1-bin counting method, as a function of time.
The input number of muons as a function of time is the mean muon time structure of proton showers with
18.0 ≤ log10 (𝐸/eV) ≤ 18.2 and 𝜃 ≲ 18◦ (sin2 𝜃 ≤ 0.10) at 450 m from the core. The mean number of
muons as seen by the detector is computed by introducing the true time delays from the detector in the input
muons. Shaded areas represent 1𝜎 uncertainties.

5. Summary and outlook

We presented and compared four counting methods that account for the pile-up effect: the
infinite window, N-bin window, N-bin centered window, and the 1-bin method (developed in this
work). All four methods are based on the solution to the classical occupancy or “balls-in-boxes”
problem, where the particles are represented by balls and the segments of the detector by boxes.
The strategies differ mainly in the duration of the window within which one realization of the balls-
in-boxes problem is considered. The difference between the N-bin and N-bin centered strategies
is that the position of the windows are determined such that the center of the output signal aligns
with the center of a given window. What differentiates the 1-bin method from all others is the
consideration of inhibited segments.

The muon counters of the Underground Muon Detector at the Pierre Auger Observatory provide
a specific application for this general counting method. To test and compare the various methods,
we used the latter as our research case. We demonstrated that all methods but the N-bin one perform
well for typical time structures of the muon signal in a detector like the Auger UMD. The mean
bias is contained within ±10 % for all methods other than the N-bin one, provided that saturation is
not significant.

Finally, we demonstrated that the 1-bin method may be used to reconstruct the time structure of
the muon signal as observed by the detector down to a single time-bin resolution. Such a resolution
is not provided by any other known method. This makes it possible to do novel research on the
muon component’s temporal structure. Such research could be key for mass composition analysis.
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Finally, counting photons produced in liquid scintillators with photo-multiplier tubes (PMTs),
a typical design of neutrino studies, may be possible using the counting method established in this
work. The method is only useful if the PMT signals are processed using a discriminating threshold
(counter mode). In this context, it is possible to determine the energy of the neutrino by counting the
estimated number of scintillation photons produced in a neutrino event (e.g. as in Ref. [18]). More
specifically, since the expected scintillation photon rate is the same for all sets of PMTs positioned
equally apart from the interaction vertex, the proposed counting method may be used there. These
sets would be rings in spherical detectors, corresponding to the intersection of spheres centered
at the vertex with the larger spherical array of PMTs. This applies, for instance, to the Jiangmen
Underground Neutrino Observatory (JUNO) [19] and the Sudbury Neutrino Observatory + (SNO+)
[20]. The group of PMTs in cylindrical detectors that expect an identical rate would follow more
complicated curves formed by the intersection of spheres centered at the vertex with the cylindrical
array.
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