PROCEEDINGS

OF SCIENCE

CHASM (CHerenkov Air Shower Model)

Isaac Buckland“* and Douglas Bergman“
“Dept. of Physics & Astronomy and High Energy Astrophysics Inst.,
University of Utah, Utah, USA

E-mail: isaacbuckland@cosmic.utah.edu, bergman@physics.utah.edu

CHASM (CHerenkov Air Shower Model) is a python package which leverages the universality of
charged particles in an extensive air shower to produce a deterministic prediction of the Cherenkov
light signal for a given shower profile and geometry. At sampled points throughout the domain
of all shower development stages and altitudes, the angular and yield distributions of Cherenkov
light have been calculated at an array of distances from a shower axis. Chasm accesses and
interpolates between these distributions at runtime to produce the aggregate signal from the whole
shower at user defined telescope locations. This paper gives a detailed description of the methods
used to compute the Cherenkov distribution tables from universal charged particle energy and
angular distributions. It also describes the workflow of CHASM itself, how a shower and axis
is constructed, and how a user can customize the simulation. Finally, this paper describes how
to install CHASM both from source code on GitHub and using pip (python’s built in package
manager) and how to use it.

38th International Cosmic Ray Conference (ICRC2023)

Nagoya, Japan]

The Astroparticle Physics Conference

*Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:isaacbuckland@cosmic.utah.edu
mailto:bergman@physics.utah.edu
https://pos.sissa.it/

CHASM Isaac Buckland

1. Universal Cherenkov Angular Distribution

The relative number of charged particles at a certain stage of EAS development traveling in a
certain direction relative to the shower axis is a convolution of the universal charged particle energy
and angular distributions, as the angular distribution is energy dependent. These charged particles
produce Cherenkov photons if their energy exceeds the local Cherenkov threshold. These photons
are produced into a cone whose opening angle is determined by the local index of refraction. Figure
1 shows the shower axis direction as fi, shower charged particle direction as €, and Cherenkov
radiation propagation direction as y. There are always two charged particle directions with the
same polar, but different azimuthal angles which produce Cherenkov light at the same polar angle
from the shower axis. The calculation of the relative contributions of these cones at directions
relative to the shower axis, as well as the average number of photons produced per charged particle,
are described in detail in our recent publication in Astroparticle Physics [1].

Figure 2 shows the Cherenkov angular distribution per unit solid angle at maximum develop-
mentf =0 and at § = n — 1 = 10~* where 7 is the index of refraction. The integral over charged
particle velocities was performed both directly, and using a Monte Carlo method. The bins used to
collect the Monte Carlo data were chosen to center around the angles tabulated by the convolution
integral. While there are slight differences at small angles the peak angle matches exactly [1]. These
distributions were tabulated at an array of shower development stages and indices of refraction and
saved as compressed numpy files for access by the CHASM (CHerenkov Air Shower Model) 7
program.

Cherenkov Angular Distribution at t =0 and 6= 10"*

n R Convolution
—— Monte Carlo

do

1073 102 10! 10°
#(radians)

Fi 1: Spherical try of Cherenk .
1sure phetica’ geotnetty 0 ereniov cones Figure 2: Comparison between Monte Carlo and di-

rect integration.

2. Shower Mesh Sampling

In addition to the universal distributions describing shower particle energy and propagation
direction, particle position (in Moliere radii) relative to the axis is also drawn from a universal
distribution commonly known as the NKG (Nishimura-Kamata-Greisen) distribution. Fits to COR-
SIKA (COsmic Ray SImulations for KAskade [5]) simulations also show a strong dependence of

CHASM Isaac Buckland

Figure 3: This figure shows the propagation vectors which result when sampling a shower away from the
axis. The shower axis is the black vector pointing downward. The green vector, directly from the shower
axis to a counter location (i.e. the angle it makes with the axis) is what is sampled without the mesh. The
blue vectors begin from points on rings with various radii in Moliere unit space.

the lateral distribution on particle energy [4]. Since both particle Cherenkov production and particle
location depend on shower energy, we see a modest dependence of the Cherenkov angular distri-
bution on distance from the axis. The Monte Carlo method described in section 1 was extended to
assign charged particles a radii from the energy dependent version of the NKG distribution. This
allows for calculation of Cherenkov angular distributions at various distances from the shower axis.
When simulating the aggregate shower Cherenkov signal at a detector, early in the EAS
development, or when the distance to the point of interest on the shower axis is large, it is sufficient
to approximate the whole shower, i.e. all particles, as lying along the axis itself. However, if a
detector is close to an EAS footprint, it becomes necessary to sample Cherenkov production at
various distances from the shower axis in order to accurately reproduce the shape of the Cherenkov
pulse waveform. CHASM 7 will distribute charged particles to logarithmically spaced rings in
Moliere unit space. Figure 3 shows how Cherenkov photon travel vectors change when sampled
away from the axis. This effect is shown in figure 5. Using the CHASM 7 mesh option not only
changes which distribution is sampled, but also which angle is sampled from the distribution.

3. Comparing to CORSIKA IACT

Showers were generated using CORSIKA 7.69 compiled with QGSJETII with Cherenkov signal
generated by the IACT extension [5]. Cherenkov counters were defined at increasing distances from
the shower core. A set of showers was generated both with and without atmospheric extinction.
CHASM simulations were generated using the same shower geometry and profiles. The CORSIKA
shower referenced in figures 4 and 5 is a proton shower with primary energy 5 x 10° GeV, Xyax of
527 g/em?, Npax of 3.12 x 10° particles. Figure 4 is a comparison of Cherenkov lateral distribution,
the total number of photons collected from the whole shower at each spherical counting volume,

CHASM Isaac Buckland

from both CORSIKA and universality. CHASM uses CORSIKA’s atmoshperic extinction tables
to calculate extinction along Cherenkov photon travel paths. Figure 5 is a comparison of arrival
time distribution of Cherenkov photons at just one counter from CORSIKA and CHASM both with
and without mesh sampling. Particles produced by charged particles on the side of the axis closer
to the detector arrive before ones produced along the axis. The CHASM mesh option accounts
for these photons. A Jupyter notebook which imports the CORSIKA data from an IACT file and
creates an analogous CHASM simulation is included in the "demo" directory of the CHASM github
repository [2].

Cherenkov Lateral Distribution Counter 50.0 m from Core.

i ® CORSIKA IACT [CORSIKA-IACT
® CORSIKA IACT (Attenuated) 2000 + [CHASM mesh
® CHASM [CHASM no mesh
& ® CHASM (Attenuated) 1

VZ::.:..

H
)
o
o

H
5]
™
-
o
=]
=]

Total Number of Photons
Number of Cherenkov photons

1250
'0:.""..' 1000
. %, .
b bl
".l. [750
*3 *g
. L 500 1
L] e ® $o
e 5 250
107 4 >e j L
T T T T T T [T
] 200 400 600 800 1000 8.5x 101 9x 10! 9.5% 10! 102
Distance from Shower Core (m) Time (ns)
Figure 4: Comparison of lateral distributions. Figure 5: Comparison of photon arrival times.

4. NICHE Monte Carlo Using CHASM Signals

The NICHE (Non-Imaging CHErenkov) detectors are fourteen single-pmt photon counters
deployed just to the south of the Telescope Array Middle Drum observatory in the field of view
of the TALE telescopes [6]. The array sits at an altitude of 1564 meters. Each NICHE detector
has a temporal resolution of five nanoseconds, and a twelve bit FADC (Flash Analog to Digital
Conversion) resolution. A detector will trigger if the mean of any eight samples is more than seven
sigma above the mean of the previous 1024 samples.

A detector Monte Carlo using CHASM to generate Cherenkov signals is currently in develop-
ment. Since CHASM can generate shower signals within seconds, simulations of many showers
can be produced in reasonable a amount of time. Thus far, shower parameters are generated for
sets in various energy bins, and CHASM signals are produced for those showers at the location of
each NICHE detector. Photons arriving with a zenith angle greater than 45 degrees are cut. The
trigger and FADC electronics are then simulated. These datasets were used to calculate the trigger
aperture of the NICHE array. Ten thousand events were generated in each energy bin to calculate
the aperture values in figure 6. Future work will involve passing signals to shower reconstruction
programs.

CHASM Isaac Buckland

1e7 Niche Trigger Aperture Using CHASM Cherenkov Signals

——

——

08

Trigger aperture (m*2 *sr)

02

Figure 6: Trigger aperture of the NICHE array.

5. Upward going showers and NuSpaceSim

The first iteration of CHASM is being tested for implementation in nuSpaceSim, a compre-
hensive neutrino simulation package for space-based and suborbital experiments [8]. Tau neutrinos
skimming the Earth may interact via the charged-current interaction in the Earth’s crust. The re-
sulting tau particle leaves the Earth and decays, serving as the primary particle in an upward going
air shower.

The flexibility of CHASM allows for the same tables to be accessed for development occurring
along an upward trajectory. The CHASM demo Jupyter notebook available in the GitHub repository
[2] implements CHASM for a hypothetical upward going primary. Figure 7 shows the signal of
that shower at an array of counters in orbit facing normal to the shower axis. Since these types of
showers will be highly inclined, the curvature of the atmosphere has a significant effect. Figure 8
shows the arrival time distribution at just one counter for the same shower both with and without
the CHASM curved atmosphere treatment.

Cherenkov Upward Shower Signal at ~500km Altitude

Xmax = 666.0, Nmax = 6.0e+07, X0 = 0, lambda = 70.0

Effect of Curved Atmosphere Correction
70

60 [correction

[no correction

w
=1
=1

60 4

&
o

N
15
=)

50 4

N
=1

40 A

30 4

Counter Plane Y-axis (km)
o
=
o
[=]

)
S
o
Number of Cherenkov Photons
Number of Cherenkov Photons

=
o
=1

—-60 —40 -20 0 20 40 60 01 . . . , . .
Counter Plane X-axis (km) 45 50 55 60 65 70 75
Nanoseconds +7.143%e6

Figure 7: Upward going shower signal with 85 degree

. Figure 8: Arrival time distribution.
zenith angle.

CHASM Isaac Buckland

6. Installing CHASM

CHASM can be installed both from source or using pip. Instructions on how to do so can be
found on the github page [2]. A screenshot of the page is shown in figure 9.

README.md

CHASM (CHerenkov Air Shower Model)

CHASM is a python package which leverages the universality of charged particles in an extensive air shower to
produce a deterministic prediction of the Cherenkov light signal for a given shower profile and geometry. At samples
throughout the domain of all shower development stages and altitudes, the angular and yield distributions of
Cherenkov light have been calculated at an array of distances from a shower axis. Chasm accesses and interpolates
between these distributions at runtime to produce the aggregate signal from the whole shower at user defined
telescope locations.

Installation
To install from pip:
pip install CHASM-NuSpacesim

To install from source:

1. git clone https://github.com/ikepcl/CHASM NuSpacesim
2. cd CHASM_NuSpacesim

3. python3 -m pip install -e .

Figure 9: CHASM github page showing the readme file with installation instructions: https://github.
com/ikepcl/CHASM_NuSpacesim.

7. CHASM Program

CHASM is a flexible python program in which the user can manually construct a simulation
of the Cherenkov light produced by an extensive air shower (EAS). The frame for the simulation
itself is named Simulation and is available under the CHASM namespace.

import CHASM as ch
sim = ch.Simulation()

A user will then add various ’elements’ to this simulation. The shower Axis defines the direction
of the primary particle. The zenith and azimuthal angles (in radians) are defined by the first two
positional arguments, respectively. The Cartesian coordinate system of CHASM defines the xy
plane as flat on the ground with the z axis vertically upward. The origin of the CHASM coordinate
system is where the shower axis intersects with the Xy plane, the altitude of which is defined by
the third positional argument. If the keyword flag curved is set, the depth steps, light propagation,
timing, and atmospheric extinction are all calculated using a curved atmosphere.

https://github.com/ikepc1/CHASM_NuSpacesim
https://github.com/ikepc1/CHASM_NuSpacesim

CHASM Isaac Buckland

sim.add(ch.DownwardAxis (theta, phi, obs, curved=False))

For upward going showers induced by tau neutrinos, the user can also define an upward going
axis.

sim.add(ch.UpwardAxis (theta, phi, obs, curved=False))

The shower profile to be projected onto the axis can be defined using Gaisser Hillas parameters.
The positional arguments are depth at maximum, number of shower particles at maximum, depth
of first interaction, and the Gaisser Hillas lambda parameter respectively.

sim.add(ch.GHShower (Xmax ,Nmax ,X0, Lambda))

A shower profile can also be defined by an array of depths and the number of shower charged
particles at each of those depths.

sim.add(ch.UserShower (X, nch))

Detector locations are either defined as spheres in the same way as in CORSIKA TACT [5] or
as flat horizontal apertures. In both cases the user will supply a rank two numpy array of Cartesian
vectors to the center of each counter. The user will also define the radius of each counter.

sim.add(ch.SphericalCounters (counter_vectors, counter_radius))
sim.add(ch.FlatCounters (counter_vectors, counter_radius))

Finally, a user will define the Cherenkov wavelength interval minimum, maximum, and the
number of bins with the Yield object. For wavelength dependent post-processing, such as ray-tracing,
more bins should be used.

sim.add(ch.Yield(min_wavelength, max_wavelength , Nbins))

Once the simulation has all these necessary elements, the run method calculates the Cherenkov
signal from each axis step towards each counter. This calculation interpolates between the pre-
compiled tables of Cherenkov angular distributions described in section 1. A detailed description of
the calculation of a shower’s aggregate signal is described in [1]. The run method takes two keyword
flags. The first, mesh indicates whether to sample the axis using the mesh method described in
section 2. The second, att, indicates that atmospheric extinction should be taken into account as the
photons propagate to the counters.

def run(self, mesh: bool = False, att: bool = False) -> ShowerSignal:

sig = sim.run(mesh=True, att=True)

The returned ShowerSignal object includes the number of photons coming from each axis point
to each counter, their corresponding arrival times, wavelength values, and other attributes such as
the profile and arrival cosines for convenience. For use in an interactive python session, only the
axis and the counters are included in the container’s string representation. The photons array is a
rank three numpy array where the first axis is the index of the counter, the second is the index of
the wavelength bin, and the third is it’s index along the axis. Wavelength is not considered by the
CHASM atmospheric refraction, so the times array is only rank two, and thus the same for photons
arriving with each wavelength.

CHASM Isaac Buckland

@dataclass

class ShowerSignal:
’’’This is a data container for a shower simulation’s Cherenkov
Photons, arrival times and counting locations.

000

counters: Counters #counters object

axis: Axis #axis object

source_points: np.ndarray = field(repr=False)
wavelengths: np.ndarray = field(repr=False)
photons: np.ndarray = field(repr=False)

times: np.ndarray = field(repr=False)
charged_particles: np.ndarray = field(repr=False)
depths: np.ndarray = field(repr=False)
total_photons: np.ndarray = field(repr=False)
cos_theta: np.ndarray = field(repr=False)

If one is accustomed to dealing with CORSIKA IACT photon bunches, the ShowerSignal
object has a get bunches method which returns a rank 2 numpy array where each entry are the
parameters in a usual non-compact CORSIKA TACT photon bunch [5]. It takes the index of the
desired telescope as an argument. The x and y coordinates of each bunch’s arrival in the shadow of
the counter are generated randomly.

def get_bunches(self, tel_id: int) -> np.ndarray:

Many existing analyses read directly from CORSIKA IACT eventio files [7]. CHASM includes
a function write ei file which writes the output of the simulation to that same format byte for byte.
This will allow existing reconstruction programs for any detector which rely on files of this format
to use CHASM instead of CORSIKA IACT. This function takes a ShowerSignal object and a target
filename as arguments.

def write_ei_file(sig: ShowerSignal, filename: str) -> None:

References

[1] L. Buckland, et al., Astropart. Phys. 150 (2023) 102832
[2] https://github.com/ikepcl/CHASM_NuSpacesim
[3] D. Bergman, PoS(ICRC2013)0983

[4] S. Lafebre, et al., Astropart. Phys. 31 (2009) 243

[5] D. Heck et al., Report FZKA 6019 (1998)

[6] D. Bergman et al., UHECR (2018) 05001

[7] K. Bernlohr, eventio — a machine-independent hierarchical data format and its programming
interface (2014)

[8] J. Krizmanic, et al., PoOS(ICRC2019)936

https://github.com/ikepc1/CHASM_NuSpacesim

	Universal Cherenkov Angular Distribution
	Shower Mesh Sampling
	Comparing to CORSIKA IACT
	NICHE Monte Carlo Using CHASM Signals
	Upward going showers and NuSpaceSim
	Installing CHASM
	CHASM Program

