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Results from the Pierre Auger Observatory indicate that nuclei make a sizeable part of the observed
flux of ultra-high energy cosmic rays (UHECRs). The theoretical study of both in-source and extra-
galactic propagation requires detailed understanding of nuclear interactions with the surrounding
photon fields (i.e. CMB, EBL, accretion disk thermal emission, non-thermal emissions) and in
particular the resulting nuclear cascades which describe the escaping composition and its evolution
over propagation. This contribution presents a novel treatment of UHECR nuclear cascades as a
Continuous Time Markov Chain showing that this process underlies the stochastic photonuclear
interactions experienced by UHECRs both within sources and during extra-galactic propagation.
As result, expressions for probability distributions are obtained which have closed form and
are more efficient to compute than other methods presently employed such as Monte-Carlo or
numerical integration of systems of differential equations. Furthermore, this approach allows
more nuance in describing compositions without the need of ad-hoc restrictions (such as limiting
the number of species by decay lifetime or restricting products to most frequent secondaries)
expanding the number of nuclear species that can be included with low cost in computation time.
Using this method, the propagation horizon related to photointeractions is defined precisely and
can be quantified to any desired level of confidence using the obtained probability density functions
for complete disintegration. The in-source survival fraction is computed in an example of UHECR
source previously studied, and the application of this approach for extra-galactic propagation is
also discussed.
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1. Introduction

The origin of UHECRs and the connections to other messengers are intricately linked to their
interactions within the sources and through the propagations over intergalactic distances. The
increasingly compelling evidence of a heavier composition in UHECRs increases the complexity
because, besides protons, a large number of nuclear species is needed to characterize the UHECR
composition, although in the present only long-lived nuclei up to iron are considered. To address
this issue, different numerical codes (e.g. [1–4]) have been suited with the necessary interaction
types (electron pair production[5] photodisintegration [1], photopion [6]) that account for the
conversions between nuclear species and continuous energy losses (CEL). The stochastic nature
of some of these interactions and its non-negligible effect on the results has been recognized
and studied via Monte Carlo simulations [1–3]. However, other approaches assuming continuous
approximation for these stochastic processes have been employed in analogy to CEL [4, 7–9] and
achieved reasonable agreement with the average values of the quantities of interest. These codes
have been successfully employed to compute the observed composition based on assumptions about
the sources, hence providing limits for the parameters related to the source evolution and spectral
index under reasonable assumptions. Nevertheless, the detailed understanding of the cascades has
been limited because of their complexity, and the large number of parameters employed in their
description: for example no closed form of the distance distributions has been presented although
they have been computed using Monte Carlo simulations (e.g. [10]) and with analytical expressions
derived under the assumption of some continuous approximation of the stochastic interactions
(e.g. [7, 9]). This paper presents a novel approach to describe the nuclear cascades which
implicitly accounts for its stochastic nature and applies to both UHECR sources and extra-galactic
propagation. Some of its advantages include its comprehensibility and the ease of implementation
and computation. Furthermore, it provides the possibility of studying the statistical fluctuations
inherent to the cascades. The probability distributions of the UHECR composition evolution are
obtained as closed form expressions and examples of these distributions are presented for in-
source and for extra-galactic propagation. The in-source survival fraction is computed employing
a previously studied UHECR source scenario. The extra-galactic propagation employing this
approach is discussed establishing limiting cases on account of the relative importance of CEL.
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2. Formulation of nuclear cascades as a Markov process

The transformations between UHECRs of different nuclear species are governed by interaction
rates (number of interaction per unit length) [11]

𝜆(𝛾, 𝑧) = 1
2𝛾2

∫ ∞

0

𝑛(𝜖, 𝑧)
𝜖2 𝑑𝜖

∫ 2𝜖 𝛾

0
𝜀𝜎(𝜀)𝑑𝜀 (1)

where 𝜀 = 𝛾𝜖 (1 − cos 𝜃) is the photon energy boosted to the nucleus reference frame, and 𝜎

represents the cross section for interaction of interest: for photodisintegration interactions𝜎 includes
the Giant Dipole Resonance [12] and the quasi-deuteron [13] modes of interaction; for photomeson
interactions 𝜎 is predominantly the photopion production cross section [6].

Both photodisintegration and photomeson interactions lead to the breakup of the initial nucleus
into species of lower mass, all preserving the initial Lorentz boost except the secondaries of lower
masses (pions and resulting neutrinos and photons) whose energy distribution is broader. These
interactions are stochastic not only on the position/time of occurrence, but also on the number
and species of the secondaries produced in each event. However, the probabilities of production
are governed by the interaction rates and are constant1 as the cascade develops, making this is a
stochastic Markov process and the cascade a Continuous Time Markov Chain[14]. The probability
distribution of the distance until absorption 𝐿 (i.e. reaching a set state, or nuclear species in this
case) has been derived and is in this case [14]

𝑓 (𝐿) = 𝜶0 exp (𝚲𝐿) 𝚲e (2)

where 𝚲 = 𝚲(𝛾) is a matrix formed by all the interaction rates of all species ({𝑆𝑘}, 𝑘 = 1..𝑁)

𝚲(𝛾) =

©­­­­­­­«

−𝜆tot
𝑆1

𝜆𝑆1→𝑆2 𝜆𝑆1→𝑆3 𝜆𝑆1→𝑆4 𝜆𝑆1→𝑆5 ... 𝜆𝑆1→𝑆𝑁

0 −𝜆tot
𝑆2

𝜆𝑆2→𝑆2 𝜆𝑆2→𝑆3 𝜆𝑆2→𝑆4 ... 𝜆𝑆2→𝑆𝑁

0 0 −𝜆tot
𝑆3

𝜆𝑆3→𝑆3 𝜆𝑆3→𝑆3 ... 𝜆𝑆3→𝑆𝑁

... ... ... ... ... ... ...

0 0 0 0 0 ... −𝜆tot
𝑆𝑁

ª®®®®®®®¬
(3)

included in the cascade and 𝜶 is a vector whose elements are the starting fractions of each of the
𝑁 species. The rates 𝜆𝑆𝑖→𝑆 𝑗

are obtained using Eq. 1 with the corresponding cross section where
the interacting species 𝑆𝑖 produces 𝑆 𝑗 , and 𝜆tot

𝑆𝑖
=
∑𝑁

𝑗=𝑖+1 𝜆𝑆𝑖→𝑆 𝑗
. Note that 𝚲 is upper triangular

when the nuclear species are arranged in monotonically decreasing order of the mass (𝐴𝑚 ≥ 𝐴𝑛 as
long as 𝑚 < 𝑛). Finally, employing Kolmogorov’s differential equations [14] the evolution of the
probability vector describing the fractions of each species can be written

𝜶(𝐿) = 𝜶0 exp (𝚲𝐿) . (4)

3. Source propagation

The cascade of nuclei inside sources has been studied with diffusion equations analogous to the
extragalactic propagation case [15–17] as interactions with photons are expected to be dominant.

1Interaction rates depend on the redshift only for propagations over sufficiently large distances, however in this case
a small modification yields an analogous form of Eq. 2 (see Section 4).
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Figure 1: Example of nuclear disintegration in a source scenario (see text). The interaction rates of the
injected oxygen (left) and the probability distributions over distance for some secondary nuclei at two different
boosts as indicated (right).

However, the photon densities in such scenarios are better modelled with a broken power law
[17, 18]. Figure 1 (left) shows the interaction rates for the injected species (oxygen) in a Tidal
Disruption Event source type modelled as in Refs. [6, 18] where the photodisintegration and
photomeson interactions are clearly dominant over all boosts compared to CEL (synchrotron losses
in this case). The acceleration rate is also shown to remark the maximal boost of escaping nuclei
as the point where the acceleration rate is matched by all the losses ( 𝛾max ≈ 3 · 108).

The probability distributions for the loss of three (green lines) and for the loss of four nucleons
(orange lines) by the injected nucleus oxygen according to Eq. 2 are shown in Figure 1 (right). The
distributions are shown for two values of the Lorentz boost for comparison. At 𝛾 = 3 · 105 the
injected nuclei would interact in average about three times before escaping the source, although half
of the rate leads to a one-neutron loss and the other half to one-proton loss. The resulting species
from each subsequent interaction have in general different interaction rates but typically smaller
than the more massive injected species. The distributions for the loss of three and four nucleons
both peak at distances larger than the source radius which illustrates their broadness. However, the
external portion should be truncated since nuclei are assumed to escape beyond a distance equal to
the radius. Integrating the distributions up to the this limit yields the probabilities that a certain loss
of mass has occurred before the escape: 16.4 % for three nucleons less and 11.5 % for four nucleons
less. These results reflect the natural expectation that the loss of four nucleons is less likely since
in average it is conditioned by the loss of three nucleons. It should be noted that these probabilities
only reflect the likelihood of mass loss before versus after crossing the radius (if the target photons
are the same), they do not reflect probabilities related to the composition distribution, which may
be computed with Eq. 4

On the other hand, for 𝛾 = 1 · 107 the interaction frequency is about five times larger than
at 𝛾 = 3 · 105 hence leading to a considerable suppression: the probability of three-nucleon
before escape is 98.2 % whereas the probability of four-nucleon loss before escape is 99.1 %! This
apparently contradictory result is a consequence of the difference in the tails of these curves: while
the four-nucleon loss curve peaks at a larger distance (as expected given the average conditional
loss of three nucleons) its tail decreases faster. The tail of the curve is strongly influenced by the
interaction rates of the ending species, and in this case the mean rate for species with 𝐴 = 12 is
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Figure 2: Characteristic propagation distances compared with the energy loss lengths as a function of
Lorentz boost for two different starting nuclear species (see the text for details).

11.38 𝑅−1
source, larger than the mean rate for species with 𝐴 = 13 is 10.43 𝑅−1

source therefore in a sense
𝐴 = 12 have in average a shorter reach compared to 𝐴 = 13 species.

4. Extragalactic propagation

4.1 Propagation horizons

In the case of extragalactic propagation the interaction rates are also dependent on redshift due
to the corresponding dependence of the target photon fields, and thus the interaction matrix can’t be
considered invariable over the propagation path. This means that the process no longer respects the
Markov property but depends on the whole preceding path. However, this is a special case where the
Markov property can be recovered[19] because the rates scale as 𝜆(𝛾, 𝑧) = (1+ 𝑧)3𝜆((1+ 𝑧)𝛾, 𝑧 = 0)
[20] so the interaction matrix can be written 𝚲 ≈ (1 + 𝑧)3𝚲(𝛾) to a first approximation and the
obtained distribution resembles the expression in Eq. 2 [19]

𝑓 (𝐿) = (1 + 𝑧(𝐿))3𝜶0 exp
(
𝚲
∫ 𝐿

0
(1 + 𝑧(𝑠))3𝑑𝑠

)
𝚲e (5)

Figure 2 shows the means (lines) and the 50 % confidence bands (shaded areas) of the distance
distributions for cascades silicon-to-carbon (left) and iron-to-carbon (right) computed using Equa-
tion 2 (orange) and Equation 5 (green). The distributions are indistinguishable when the distances
are small (𝐿 ≲ 100 Mpc) reflecting that the expressions are identical for 𝑧 ≈ 0, whereas they diverge
more as the propagation distance corresponds to larger redshitfs. For comparison, the blue line

shows the energy loss length D𝑖 =

(
1
𝐸𝑖

𝑑𝐸𝑖

𝑑𝐿

)−1
=

(
1
𝐴𝑖

𝑑𝐴𝑖

𝑑𝐿

)−1
=

(
1
𝐴𝑖

∑
𝑗 (𝐴𝑖 − 𝐴 𝑗)𝜆𝑆𝑖→𝑆 𝑗

)−1
[1, 11]

which is commonly employed to estimate the typical propagation distance of UHECRs (it reduces
to D𝑖 ≈ 𝐴𝑖

𝜆𝑆𝑖

when one nucleon emission is the dominant loss). Overall D𝑖 is larger than the means
from the distributions in Eqs. 2- 5 and thus overestimates the characteristic propagation distance,
especially if we note that the loss of (𝐴𝑖 −12) nucleons requires a total distance (𝐴𝑖−12)

𝑛̃𝑖
D𝑖 where 𝑛̃𝑖

is the average number of nucleons lost per energy loss length 𝑛̃𝑖 =
∑

𝑗 (𝐴𝑖 − 𝐴 𝑗)
𝜆𝑆𝑖→𝑆𝑗

𝜆𝑆𝑖

. Therefore,
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Figure 3: The description of the propagation can be divided in three portions according to the dominant
process (see the text for details).

D𝑖 is not as good estimate of the characteristic propagation distances as the mean of the distributions
presented here.

4.2 Continuous Energy Losses and propagation regimes

Another aspect of extra-galactic propagation is the effect of CEL which produce boost changes
as nuclei propagate and thus the Markov property of the cascade process does not hold, however it
is useful to determine the conditions in which the effect of the CEL can be neglected.

The Taylor expansion of the rates to the first order approximation around set values 𝛾 = 𝛾0,
𝑧 = 𝑧0 is

𝜆(𝛾, 𝑧) ≈ 𝜆(𝛾0, 𝑧0) +
𝜕𝜆

𝜕𝛾

����
𝛾0, 𝑧0

(𝛾 − 𝛾0) +
𝜕𝜆

𝜕𝑧

����
𝛾0, 𝑧0

(𝑧 − 𝑧0) = 𝜆(𝛾0, 𝑧0) +
(
𝜕𝜆

𝜕𝛾

𝜕𝛾

𝜕𝑧
+ 𝜕𝜆

𝜕𝑧

)
(𝑧 − 𝑧0)

(6)
where (𝛾 − 𝛾0) = 𝜕𝜆

𝜕𝑧
(𝑧 − 𝑧0) was used and 𝜆(𝛾0, 𝑧0), 𝜕𝜆

𝜕𝛾
and 𝜕𝜆

𝜕𝑧
can be obtained from Eq. 1, and

𝜕𝛾

𝜕𝑧
has the form [7]

𝑑𝛾

𝑑𝑧
=

𝛾

1 + 𝑧

(
1 +

𝛽pair

𝐻 (𝑧)

)
. (7)

From Eq.6 is clear that the fraction 𝜂 = 𝜆(𝛾0, 𝑧0)/
(
𝜕𝜆
𝜕𝛾

𝜕𝛾

𝜕𝑧
+ 𝜕𝜆

𝜕𝑧

)
/(𝑧 − 𝑧0) determines the dominant

term and can help determine a validity region given a choice of threshold value and a fixed step
in redshift. When 𝜂 >> 1 the main term is 𝜆(𝛾0, 𝑧0) and the effect of CEL can be neglected,
thus this determines the Cascade Dominated regime where the distributions Eq. 2 and Eq. 5 apply.
For 𝜂 << 1 the effect of CEL is prevalent and 𝜆(𝛾0, 𝑧0) is subdominant, thus this determines the
Energy Loss Dominated regime where the cascade cannot occur because the energy losses produce
a decrease in boost at a larger rate and at lower values of the boost 𝜆(𝛾, 𝑧) is increasingly lower. An
intermediate Transition regime can be defined delimited by 1/𝜉 ≤ 𝜂 ≤ 𝜉 where a suitable threshold
𝜉 specifies the desired precision. Figure 3 (left) illustrates these regimes as delimited by the values
of 𝜂 for 𝑧 = 1: Energy Loss Dominated regime in blue, Cascade Dominated regime in green and
the Transition regime in yellow. Computing these boundaries for a range of redshifts a 𝛾 - 𝑧 phase
space is obtained as represented in Figure 3 (right) where arrows illustrate the approximate paths
followed at different points. We can think of the propagation in simplified form depending on where

6
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Figure 4: Example of extragalactic propagation of iron after escaping the source. The inclusive distributions
of ⟨ln A⟩ for different mass groups are shown for two different boost values as indicated.

the values (𝛾, 𝑧) of the starting cosmic ray fall in this phase space: a cosmic ray starting in the
cascade dominated region will completely cascade without a change of boost (downwards vertical
pathway) whereas starting in the energy loss region leads to paths running down and left while the
initial species does not change but it suffers energy losses during propagation. In the transition
zone, however, both the cascading and energy losses occur concurrently and different results may
be expected depending on the evolution of 𝜂. The detailed analysis of the transition zone is left
for future works but it should be noted that its description is possible employing the formalism for
Inhomogeneous Continuous Time Markov Chains[21]. In any case, it is clear from Figure 3 (right)
that the Transition regime is a limited portion of the propagation path even with considerable values
of 𝜉, and if the path crosses to the Cascade Dominated regime the boost freezes and the cascades
proceeds at the corresponding rates. Additionally, Figure 3 (right) delimits the phase space with
a darkened region to illustrate the limits for proton propagation indicating that protons starting
in this region of the phase space will lose enough energy to fall outside of the range of UHECRs
before reaching the Earth. This proton energy loss horizon also limits the secondaries from nitrogen
that can reach Earth, since for nitrogen nuclei starting in this region only secondaries heavier than
protons will make it and if it cascades completely within this region then non of the secondaries
reach the Earth as UHECRs.

Figure 4 shows an example of propagation of UHECRs as a function of the distance from
the source assuming 𝑧0 ≈ 0, hence in the Cascade Dominated regime and following Eq. 2. The
different curves represent the evolution of mean ⟨ln 𝐴⟩ of different mass groups as a function of
distance with each panel showing one of two different values of Lorentz boost as indicated. The
injected species is iron and the "absorbing" species is carbon and the interaction rates employed
have been taken from the tabulated values of interaction rates employed by CRPropa which include
184 nuclei and both photodisintegration and photomeson interactions[20]. The distributions at
different boosts are remarkably similar, mostly differing on the distance range over which the
cascade develops. This may be explained by a smooth change of the interaction matrix with the
boost 𝚲(𝛾 = 7 · 109) ∝ 𝚲(𝛾 = 9 · 109) and could be the reason for the so called Disciplined
Disintegration described in [22].
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