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The Telescope Array (TA) experiment continues to observe Ultra High Energy Cosmic Rays
(UHECRs) both with its original TA detectors as well as with the new TAx4 expansion detectors.
These observations employ Fluorescence Detectors (FDs) to capture the air shower induced by
the primary UHECRs. The FD observes fluorescence light emitted from atmospheric nitrogen
molecules excited by air shower particles. Observation of the FD extends over tens of kilometers,
and the fluorescence light is attenuated by scattering from atmospheric molecules and aerosols
during the propagation process. Seasonal dependence was found when evaluating the attenuation
of fluorescence by aerosols. We will report on the effects of this seasonal dependence on TA air
shower analysis.

38th International Cosmic Ray Conference (ICRC2023)
26 July - 3 August, 2023
Nagoya, Japan

∗Speaker

© Copyright owned by the author(s) under the terms of the Creative Commons
Attribution-NonCommercial-NoDerivatives 4.0 International License (CC BY-NC-ND 4.0). https://pos.sissa.it/

mailto:23w2089a@shinshu-u.ac.jp (K.Mizuno)
https://pos.sissa.it/


P
o
S
(
I
C
R
C
2
0
2
3
)
2
2
6

Effects of atmospheric transparency on air shower analysis K.Mizuno

1. Introduction

The Telescope Array (TA) experiment, located in Utah, USA, aims to observe Ultra-High
Energy Cosmic rays (UHECRs) at energies above 1018 eV. TA consists of 507 Surface Detectors
(SDs) and 3 Fluorescence Detector (FD) stations. Each FD station called as "Black Rock Mesa"(BR),
"Long Ridge"(LR) and "Middle Drum"(MD) have been installed surrounding SD array.

The fluorescence light emitted from air showers is scattered and absorbed by atmospheric
molecules and aerosols in the propagation process from the air shower to the FD. The distribution
and amount of aerosols fluctuate in a short time due to wind and other factors, so we need to observe
and estimate them.

In the TA experiment, we employ a variety of measurements for atmospheric monitoring, using
laser systems. This laser system is located at the center of three FD stations, and the light scattered
by the atmosphere is observed by each fluorescence detector station. This system is called CLF
(Central Laser Facility) [1]. The laser is emitted vertically at the CLF, and the side-scattered light
is captured by the FD to calculate atmospheric transparency. It has been reported that the Vertical
Aerosol Optical Depth (VAOD) as the atmospheric transparency obtained from CLF observations
has annual fluctuation in the last ICRC [2]. Figure 1 shows the median of VAOD at 5km and its
error bars (1𝜎). The number shown above the error bar is the number of CLF events which is used
for VAOD anlysis in that month. VAOD = 0.04 (blue horizontal line) is the yearly typical value. It
appears that there are fluctuations up and down around the 0.04 line. It exhibits a tendency to rise
during the summer and decline during the winter.

Figure 1: Median of VAOD and error bars indicate the range which is 1𝜎 to the left and right from the
median of its distribution for each month at BR
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2. VAOD anomaly in January

CLF operation was conducted from 2010 to 2018, and about three of those years are used in the
VAOD analysis. "Entries" in Table 1 shows the number of laser shots. "Days" in Table 1 shows the
number of days in which laser shots were conducted during the about three years period. The values
in this table indicates that the VAOD analysis is unbiased. However, the median value "0.057" in
January seems to be high. This is because some observations in January were attenuated at low
altitudes (1 to 3 km). Figure 2 shows that the distribution of number of photon when attenuation
occurs at low altitude altitude and when it does not. This specific waveform is responsible for the
increase in VAOD. We suspect that the attenuation at low altitudes may be caused by fog.

Jan. Feb. Mar. Apr. May. Jun. Jul. Aug. Sep. Oct. Nov. Dec.
Median
VAOD

0.057 0.029 0.025 0.044 0.070 0.067 0.082 0.065 0.074 0.027 0.018 0.022

Entries 135 100 145 123 163 118 82 74 148 261 219 139
Days 15 21 16 19 27 21 15 15 24 34 27 19

Table 1: The median of VAOD at each month, the number of CLF events which is used for VAOD anlysis
in that month and the number of days used for analysis in about three years

Figure 2: Distribution of the number of photon captured by FD
Left : Normal waveform, Right : waveform with attenuation at low altitude

3. Effects of atmospheric transparency seasonal dependence on air shower analysis

Currently, we use the yearly VAOD which is the constant throughout the year for atmospheric
calibration. In contrast, we can get the monthly VAOD (Figure 1) which is the different for each
month due to the CLF analysis. In this section, we estimate the systematic error when the monthly
VAOD is applied.
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3.1 Analysis Method

We evaluate the systematic error of primary energy due to the aerosols utilizing monthly VAOD
data obtained from CLF through a Monte-Carlo (MC) technique. In addition, we also evaluate that
systematic error using yearly VAOD data for comparison. In this analysis, we use the mono analysis
of BR FD [3]. To assess the impact of VAOD on shower reconstruction, we simulate a shower using
VAOD data acquired from CLF and subsequently reconstruct it using the same VAOD, yearly value,
and monthly value. As for the geometry, the result is a fix to the simulation. The conditions used
in the simulation, atmospheric conditions in reconstruction and quality cuts are as follows tables.

Conditions used in the simulation� �
• Primary particle : Proton

• Interaction model : QGSJETII-04

• log(E/eV) : 18.0, 19.0

• Zenith angle : 0 - 65°
• Azimuth angle : 0 - 360°
• Core positon (log(E/eV)=19) : within

25km from CLF

• Core positon (log(E/eV)=18) : Fan
shape centered on BR (17.5km ra-
dius)

• Number of events : Number of CLF
data per month × 500� �

Atmospheric conditions in reconstruction� �
• Thrown VAOD

• Yearly VAOD

• Monthly VAOD� �
Quality cuts� �

• Number of PMTs > 10

• time extent > 2 𝜇s

• track length > 10°
• Xmax in the field of view of FD

• Zenith angle < 55°� �

Figure 3: Model diagram showing reconstruction under three atmospheric conditions
for one air shower simulation

Figure 3 shows the model diagram showing reconstruction under three atmospheric conditions
for one air shower simulation. We compare these three reconstructed energy results. When we
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reconstruct events that have been collected over an entire year, using the values of VAOD that is
relevant for each event, there is no bias due to atmospheric effects. We assume that 𝐸event is the ideal
result in this analysis and evaluate by making comparisons between 𝐸event and 𝐸yearly or 𝐸monthly.
The diffrence between 𝐸event and 𝐸yearly or 𝐸monthly is due to the atmospheric effects. By evaluating
these differences, we can assess the systematic errors that would result from using each atmospheric
model. Δ𝐸𝑌 is the diffrence between 𝐸event and 𝐸yearly. And also, Δ𝐸𝑀 is the diffrence between
𝐸event and 𝐸monthly.

3.2 Results

We estimated the Δ𝐸Y and Δ𝐸M for each month. In this analysis, we evaluate the differences
of energy as a ratio by dividing them by 𝐸event. Figure 4 shows the Δ𝐸 histgrams of the sum of all
months at 1019 eV. These two results are not significantly different. The mean and standard deviation
were evaluated using Gaussian fitting, resulting in Δ𝐸Y = 0.8 ± 11.4% and Δ𝐸M = 0.4 ± 9.2%.
Both of them have no bias. These results mean that previous results using yearly VAOD are not
wrong.

Figure 4: Results for 1019eV : sum of all months. Left:using yearly VAOD, Right:using monthly VAOD

Figure 5: Results for 1019eV in July. Left:using yearly VAOD, Right:using monthly VAOD

There is a clear difference in the distribution of Δ𝐸 separately for each month. Figure 5 shows
theΔ𝐸 distribution in July which has the highest median of VAOD. Results areΔ𝐸Y = −10.7±5.3%
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Figure 6: Results for 1019eV in November. Left:using yearly VAOD, Right:using monthly VAOD

and Δ𝐸M = 0.3 ± 4.4% in July. These results mean that reconstructed energy tends to be estimated
lower when using yearly VAOD in July. On the other hand, reconstructed energy using monthly
VAOD has no bias. Figure 6 shows the Δ𝐸 distribution in November which has the lowest median
of VAOD. Results are Δ𝐸Y = 12.3 ± 12.1% and Δ𝐸M = −0.7 ± 9.7% in November. Energy is
estimated to be higher using yearly VAOD in November. This indicates that if the amount of aerosol
is larger than expected, the energy is estimated to be greater and vice versa.

Figure 7 shows the Δ𝐸 distribution for each month at 1018 and 1019 eV. The results using the
yearly value has annual fluctuation at both energies. This fluctuation tends to increase as energy
increases. The trend of this fluctuation is consistent with the distribution of monthly median of
VAOD (Figure 1). This means that energy tends to be estimated lower in summer and higher in
winter. Each month has a positive or negative bias. The result of summing these biases is shown in
Figure 4. Using the monthly values, this fluctuation is not seen.

4. Summary

The atmospheric transparency : VAOD used for TA air shower reconstruction is the constant
throughout the year. On the other hand, the monthly VAOD is revealed by operating CLF. Therefore,
we used these two models to estimate effects on energy reconstruction. When comparing the results
as sum of one year data, there was no significant difference between the two models. This result
means that previous results using yearly VAOD are not wrong. However, when comparing the
results for each month, there was significant impact on the models. Average value of reconstructed
energy in July and November are biased when using yearly VAOD. In the case of 1019 eV, energy is
estimated about 11% lower in July and about 12% higher in November. In contrast, there is no bias
in both months when using monthly VAOD. We found seasonal dependence of VAOD on energy
reconstruction, and we succeeded to calibrate the dependency by using monthly VAOD.

In the future, we will continue to estimate the effects of the LR FD.
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Figure 7: Δ𝐸 distribution for each month. Upper figure is at 1018 eV. Lower figure is at 1019 eV. The mean
and standard deviation evaluated using Gaussian fitting on the histgrams of the Δ𝐸/𝐸event at each month are

plotted.
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