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The Grand Radio Array for Neutrino Detection (GRAND) is an envisioned observatory that aims
to detect the radio emission from air showers induced by ultra-high-energy cosmic particles;
in particular, by neutrinos. Because these are rare, GRAND requires a large detection area,
necessitating the use of inexpensive radio-detection units that must trigger autonomously. Such a
trigger must achieve a high rejection efficiency of the dominant transient radio background, while
keeping a high detection efficiency for air shower radio pulses. Fortunately, air shower simulations
and field data suggest that air shower radio pulses exhibit characteristic features whose exploitation
would lead to a powerful background rejection. We present the results of a machine learning signal
classification method that has been tested on simulations and data recorded by a GRAND prototype
in the Gansu province of China. Considering time traces that pass a simple 3o -transients pre-
trigger, a neural network is able to keep 66% of the air showers pulses for a Signal to Noise Ratio
(SNR) between 3 and 4, and more than 86% after a SNR of 4, while rejecting between 97% and
99% of the background traces. This trigger method will eventually be implemented to the next
prototypes to be tested under field conditions.
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1. Introduction

The Giant Radio Array for Neutrino Detection (GRAND) is an ambitious proposal to instrument
a total area of 200 000 km? with 200 000 radio antennas in the next decade. These antennas, grouped
in sub-arrays of 10 000 units typically, deployed at favorable locations around the world, will form an
observatory for Ultra-High Energy cosmic particles —and primarily, neutrinos— with unprecedented
detection sensitivity and angular resolution (of the order 0.1° [1]). See [2, 3] for more details on
GRAND.

For gigantic radio arrays such as GRAND to succeed in detecting UHE neutrinos and cosmic
rays, we will need to develop large-scale autonomous radio detectors that reach similar levels of
detection and reconstruction performance as externally triggered radio detectors. An effort has been
initiated within the GRAND collaboration through the NuTrig proposal to achieve this goal [4]. In
the present work, we focus on the First Level Trigger (FLT), i.e. the treatment developed within
NuTrig to identify radio pulses associated with Extensive Air Showers (EAS) at the level of each
antenna alone.

In section 2, we introduce the principle of an advanced FLT algorithm. In section 3, we present
the data that are used to train and evaluate a neural network-based FLT. We then detail the neural
network itself in section 4, the training process in section 5, and the results in section 6.

2. Principles of the First Level Trigger

Past [5, 6] or present [7] experiments which have attempted autonomous radio-detection of
EAS use a rather simple trigger logic to decide if a transient signal measured at the antenna level
may be considered for recording. Very often, a basic signal-over-threshold condition is used, where
the threshold is set at a few times the stationary noise level. Even if more elaborated conditions
on pulse shape, duration, or repetition rate might have been considered in some experiments, we
believe a more elaborated treatment of the available information could be performed. We note in
particular that the good understanding of the processes leading to electromagnetic emission by EAS
now allow a reliable simulation of the pulses associated with EAS. In addition, the electromagnetic
environment is continuously monitored by the radio antennas. This precise knowledge of both
(EAS) signal and background can surely be used to build an advanced FLT.

In NuTrig, we are focusing on a neural network-based FLT. This FLT is motivated by a first
successful study based on the TREND experimental data [8]. Hundreds of EAS candidates were
identified within the TREND experimental data through an offline analytical algorithm, with a ~80%
confidence level [9]. The time traces associated with these EAS candidates, and the same amount
of random TREND background traces (that were rejected by the same identification algorithm),
were used to train a neural network. When applied to a billion of recorded TREND traces, the
neural network achieved a background rejection efficiency of 82% at the antenna level, and of 98%
at the array level (where space-time coincidences between antenna-level triggers were requested),
while 90% of the EAS candidates were successfully identified. This encouraging result led us to
apply a similar method to the FLT for GRAND. While TREND antennas were monopolar, GRAND
antennas are equipped with 3 perpendicular arms. Because EAS radio signals exhibit very specific



GRAND First Level Trigger Sandra Le Coz

Background 3D-trace Air shower 3D-trace

0.30 4 -y
0.25 1

0.20
0.20 4 1 l | ‘|

1 L] | [/
Tt
0.15 4 W

0.10 -

ADC value (scaled+shifted)

0.05 0.05 1

ADC value (scaled+shifted)

0.00 4

_0.05 4 —0.05 1

T T T T T T T T T
] 200 400 600 800 1000 ] 200 400 600 800 1000
Time sample ID [2ns sampling] Time sample ID [2ns]

Figure 1: ‘Background’ (left) and ‘air shower’ (right) 3D-trace examples (blue, orange and green, for X, Y
and Z channels, respectively). Traces are scaled (for training reasons) and vertically shifted (+0.1 for Y and
+0.2 for Z, for illustration only). For the ‘air shower’ 3D-trace example (right), the air shower signal before
the superimposition is shown in red, purple, and brown. This air shower signal belongs to the [4,5] SNR
range, for the X and Y channels.

polarization features [10], that background pulses can hardly mimic, we were confident that better
performances might be achieved for GRAND.

3. Datasets

The neural network datasets rely on the experimental data of GP13, a GRAND prototype
composed of 13 butterfly antennas, deployed in a remote area of the Gobi desert, in the Gansu
province of China [7]. During a running phase of 11 days in May 2023, 3-arms-traces of 2048 ns
were recorded every 10 seconds.

The present study uses as an input a realistic reproduction of real run conditions. Prior to a
neural network treatment, a simple yet efficient pre-trigger algorithm is applied : only traces with
at least 2 points over 30~ within a time window of 25 ns are kept for further analysis. This treatment
reject (useless) signals without detectable transients, and allows to restrict the finite neural network
computation time for those of interest for the search of EAS. The following subsections describe
the process to produce transients datasets, for a ‘background’ and a EAS (further referred as ‘air
shower’) origin. When describing the process, ‘the maximum of the absolute value’ of a trace is
simply referred as its ‘maximum’, to lighten the text.

3.1 Background datasets

Traces are randomly picked within 669 748 daytime GP13 experimental traces. They are
selected if they pass the aforementioned windowed double 30 pre-trigger, for at least 1 of the 3
channels, and if the maximum does not stand at the edges of the trace (see section 3.2.3). 10 000
‘background’ 3D-traces, such as as the one on the left side of figure 1, are devoted to training, and
another dataset of 10 000 3D-traces is dedicated to the test phase.
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3.2 Air shower datasets

Because GP13 is still in a commissioning phase, no event could yet be tagged as a air shower
radio candidate. Unlike the TREND neural network trigger study (see section 2), which only relied
on experimental data, the present study ‘air shower datasets’ are thus semi-simulated. They are
produced following several steps that are described below.

3.2.1 Air shower electric fields

In order to cover the full possible range of signal shapes, signal frequency spectra, and simulated
signal over experimental noise ratio, that we would like to be able to trigger on, the air shower signal
datasets must be generated from a various range of simulated air showers. We therefore use a
simulation set containing air-shower-induced electric fields computed with ZHaireS [11], for an
array of 277 antennas. The set covers the full azimuth range, zenith angles are between 30° and
87°, and core positions are within the array. The air showers come from protons and iron nuclei,
of energies up to 4 x 10'® eV. We only selected air showers above 10'8 €V, in order to obtain a
significant portion of high signals.

3.2.2 Air shower ADC values

The simulated electric field is processed through the 3-arms butterfly GP13 antenna to obtain 3
open-circuit voltages. This simulated 3 open-circuit voltages are related to their respective antenna-
arm effective length complex vector, which is simulated with NEC, as a function of the incoming
electric field frequency. Each receiving antenna-arm acts as an independent voltage generator,
for which the transmitted power depends on the matching between its own impedance and the
impedance of its loaded remaining circuit.

Each of the 3 antenna-arms have its dedicated electronic route. After a balun, a matching
network is included to obtain an improved impedance matching. It is connected to a 27 dB Low
Noise Amplifier (LNA). Then, the air shower signal goes through a 3 m cable, connectors, a Variable
Gain Amplifier (VGA) fixed at 20 dB, a 30-230 MHz pass-band frequency filter, and another balun,
to finally be digitized through the Analog-to-Digital-Converter (ADC) at 500 Msps, for a length of
2048 ns (1024 samples), with a quantization of 2 X 213 integer values for a [-0.9V,+0,9V] ADC input
range. All the electronic components have experimentally been characterized by a VNA (Vector
Network Analyzer), which intend to provide their complex scattering-parameters as a function of
the signal frequency. The combination of these parameters allows to get a valuable experimental
calibration of the electronic response to the open-circuit antenna voltage.

The overall calibration (the antenna and its electronic) finally shows that, for a given projected
electric field, the X and Y channels (horizontal arms) provide similar response, while Z (vertical
arm) provides higher ADC values. This is consistent with the first GP13 experimental data (see
figure 1, left).

3.2.3 Superimposition to background

The 3D-simulated air shower ADC signal is finally superimposed on a randomly picked
experimental 3D-trace, to reproduce at best the process happening in reality. To avoid a bias due to
the position of the air shower signal within this insertion trace, the simulated air shower signal is
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randomly shifted. The shift must belong to the [0,1848] ns range of the 2048 ns trace, not to cut part
of the signal, which length is typically below 200 ns. To avoid a consequent bias, the ‘background’
and ‘air shower’ datasets have to satisfy a requirement on the position of the trace maximum. It
must be at least 200 ns after the beginning of the trace, and at most 200 ns before its end. To be
included in the ‘air shower’ datasets, the maximum of the air shower signal has to be at least 3 times
the standard deviation of the experimental trace in which it is inserted, for at least one channel. We
further refer to this as the ‘SNR’ requirement (Signal to Noise Ratio). After the superimposition,
the trace has to pass the windowed double 30 pre-trigger, as it is requested for the background
datasets. The ‘air shower datasets’ finally consists in 3945 3D-traces that are devoted to training,
and 6 SNR-ranges test-sets, for a total of 5266 traces, such as the one on the right side of figure 1.

4. Neural network

Neural networks are a powerful tool to find relationships between variables that are correlated
at a high level of complexity, therefore hard to find with classical methods. Neural networks
essentially consist in a succession of layers of variables, that are linearly combined (‘weighted’ and
added) in different ways by neurons. The neurons are then activated with non-linear differentiable
functions, to produce the next layer variables. A neural network is therefore theoretically able
to approximate any function to fit the variables. The fit is performed (say the neural network is
‘trained’) by an algorithm that descends the gradient of a ‘loss’, that quantifies the fit error as a
function of the fit-function weights. Instead of a classical fully connected neural network, where
all the variables of a layer arise from their own set of weights, we used a CNN (Convolution Neural
Network). CNN are devoted to find patterns by applying the same sets of weights (‘filters’), to a
window sliding on the arranged variables. This weights-sharing between ranges of neurons makes
the optimization process tremendously efficient for images recognition related tasks, such as our
transient signals discrimination task.

In the present study, we use the Tensor Flow/Keras machine learning framework. The input
variables of our neural network are the 3 x 1024 samples of our 3D 2048 ns traces. Because our
task is a binary classification, the target outputs are 0 or 1, 1 being the label of the air shower class,
0 being the label of the background class. The output of the neural network would therefore be
a number between 0 and 1, thus indicating the probability to belong to the air shower class. We
chose to use 3 successive layers of convolution which kernel size is 11 (size of the sliding window),
with 32 different filters per layer, with a >same’ padding (not to lose information at the end of the
trace), and to activate the neurons with the ‘relu’ function. To focus on higher level features while
reducing the computation load, we use a max-pooling layer of size 2 after each convolution layer.
The network finally ends with a single-neuron layer, activated by a sigmoid, to confine the output
values within the [0,1] range.

S. Training

The training sets are represented on figure 2, by the distribution of the 3D-traces maximum,
in standard deviation unit. Because inserting an air shower signal generally increases the standard
deviation of the trace, the maximum of the trace in standard deviation unit would decrease if the air
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Figure 2: Distributions of the trace maximum, for the 3 channels, in respective standard deviation unit.

shower signal is not higher than the underlying background trace maximum. This is what generally
happens for the Z channel (vertical arm), for which air shower electric fields are expected to be
faint. Also as expected, the X and Y channels (horizontal arms) are on the contrary dominated
by the air shower signal on a significant part of the set. At a future stage, we will study if this
distinctive feature can be exploited by a (more classical) less resource-consuming discrimination
method. However, trainings on 1D or 2D traces (not detailed in this document) show that, while the
neural network performances decrease if we consider one channel only, they are not significantly
affected by only getting rid of the Z channel.

The ‘background’ training set has been limited to 3945 instances, to match the size of the
‘air shower’ set, in order to perform a class-balanced training. The full dynamic range of the
3D-traces has been rescaled to [-1,+1], for numerical reasons that ease the training. We chose
to train our neural network with the ‘adam’ algorithm, for 80 epochs (one epoch is when all the
training instances have been used once), with a batch size of 128 (number of instances that are used
per weight-update iteration). Since the task is a classification, we chose the binary cross-entropy
loss, which evolution is shown on the left side of figure 3. The performances are also evaluated
for a validation set, which is a 10% subset of the training set, not used to descend the gradient.
It allows to check all along the process that overfitting does not arise (orange curve on figure 3).
Overfitting means the neural network is failing at extracting, from the training data, an underlying
model that can fit unseen data as well. To avoid overfitting, we chose to use a dropout of 0.5 after
each max-pooling layer. Additionally to the loss, the performances on the training set are also
evaluated with a more comprehensible metric, the accuracy, which is the proportion of instances
that are well classified. The right side of figure 3 shows that the accuracy has reached 95% at the
end of the class-balanced training, for a decision threshold of 0.5.

6. Results

In this section, we evaluate the performances of the trained neural network on the test-dedicated
sets. For air showers, data overlap between training and test sets has no chance to occur. For
background, the overlap is estimated to be 2 instances or less, with a probability of 99%. Results
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Figure 3: Loss and accuracy of the neural network as a function of the training epoch.
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Figure 4: Performances of the neural network on the background and air shower test sets. The neural network
predictions (the outputs), for all the input instances (the 3D-traces), are shown as orange dots. The dotted
red lines are the respective bin-averaged predictions. The plain red lines are the respective bin-averaged
accuracies for a 0.5 decision threshold. The [8,9] bin actually contains all the instances with SNR beyond 8.
The dotted back line is the decision threshold.

are summarized in figure 4. For background (left), scores are arranged as a function of the input
3D-trace maximum in standard deviation unit, for 10 000 instances. For air showers (right), scores
are shown for 6 sets of 3D-SNR floor maximum, from 3 to beyond 8, respectively containing [1050,
761,532,395, 314, 2214] instances. The floor SNR are randomly spread in their respective bin, for
illustration only.

The accuracy is the proportion of orange dots that are below 0.5 for background, and above 0.5
for air showers. Considering this decision threshold of 0.5, the plain red lines show a background
rejection rate between 97% and 99%, that does not significantly depend on the standard deviation
related maximum. Regarding the air shower signals, one can note that, despite generally being
outshined by transients in their background insertion trace, the ability to trigger on SNR between
3 and 4 has reached 66%. The accuracy then increases to 86% and more after a SNR of 4. The
decision threshold can be adapted to trade off efficiency for purity, or conversely.
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7. Conclusion

We have presented a preliminary neural network FLT study for GRAND. This study relied on
the first GP13 data, and on air shower simulated signals. We showed that, after a 3o--transients
pre-trigger, a neural network can trigger on 66% of the air shower signals for a SNR between 3 and
4, and on more than 86% after a SNR of 4, while rejecting between 97% and 99% of the background
traces. These performances need to be compared to what can be achieved by classical and less
resource-consuming methods. This neural network promising trigger will be implemented on the
GRAND acquisition board, to be first tested under laboratory controlled acquisition conditions.
Once the trigger is validated, it will be tested on the field. The signals it will trigger on will be
compared to air shower signals expectations, and to signals that classical algorithms trigger on.
This would assess real conditions performances and allow to verify the neural network decision is
not depending on simulation artifacts.
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