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1. Introduction

The independent component analysis (ICA) is a method of signal separation making use of a
number of output data [1–3]. It occupies a unique position among methods of signal processing
because it makes use of non-Gaussianity of signals and noises instead of treating it as an obstacle.
We have been studying it toward application to gravitational-wave data analysis. By effectively
removing non-Gaussian noises, ICA can support conventional matched filtering techinique for
gravitational wave data analysis which is optimal for Gaussian noises [4].

Themost famous problem towhich ICA can be used is what is called the cocktail party problem.
A number of people a chatting in a party and we monitor their voices by a number of microphones,
which receive superposed voices of some or all of the attendees. The ICA separates the sound of
each source, or the voice of each participant making use of the statistical independence of each
source. Similarly, ICA can be used to separate gravitational-wave signal from non-Gaussian noises
by simultaneously monitoring both the strain channel and physical environmental monitor (PEM)
channels.

In this paper we propose a new method of nonlinear ICA which is strikingly different from
existent methods [5, 6]. Our approach uses a variational method deriving a master equation
analogous to the Euler-Lagrange equation in analytical mechanics.

2. Linear Model

Here we first introduce the concept of ICA using a simple model where there are = + 1
independent sources of signal and noises, s(C) =C (B0(C), B1(C), ..., B= (C)) and observables x(C) =C
(G0(C), G1(C), ..., G= (C)) which are interrelated by an instantaneous linear relation

x(C) = �s(C) (1)

where � is assumed to be a time independent matrix. Our ultimate goal is to reconstruct s(C) out
of observables x(C), but it is not possible to do so in full as we do not know each component of �.
What we do here to implement ICA is to try to find another set of variables y(C) which are given by
a linear transformation of x(C),

y(C) = ,x(C) (2)

in such a way that each component of y(C) is statistically independent. The ICA can achieve it if
signals and noises have non-Gaussian distributions except for one Gaussian variable.

The mutual independence of statistical variables may be judged by introducing a cost function
! (,) which represents a “distance” in the space of statistical distribution functionals. As an
example, we adopt the Kullback-Leibler (KL) divergence [7] defined between two arbitrary PDFs
?(y) and @(y) as

� [?(y); @(y)] =
∫

?(y) ln ?(y)
@(y) 3

=+1H = �?

[
ln
?(y)
@(y)

]
, (3)

where �? [·] denotes an expectation value with respect to a PDF ?.
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We examine the distance between the real distribution function of statistically independent
variables s, A (s) = ∏=

8=0 A8 [B8 (C)], and a distribution of y, ?H , constructed from the observed
distribution function of x through the linear transformation y = ,x as

?H (y) ≡ ||,−1 | |?G (x), (4)

where | |,−1 | | denotes the determinant of,−1.
The cost function of ?H (y) from A (s) is given by

!A (,) = � [?H (y); A (y)] = �?H [ln ?H (y)] − �?H [ln A (y)]

=

∫
| |,−1 | |?G (x) ln

[
| |,−1 | |?G (x)

]
3=+1H − �?H [ln A (y)]

= − ln | |, | | +
∫

?G (x) ln [?G (x)] 3=+1G − �?H [ln A (y)]

= −� [G] − �?H [| |, | | ln A (y)] = −� [G] − �?G [ln ?(x,,)], (5)

with
?(x,,) ≡ ||, | |A (y), (6)

and
� [G] ≡ −

∫
?G (x) ln [?G (x)] 3=+1G. (7)

The PDF of x in the last expression of (5) has , dependence because ?(x,,) is a PDF of x
which is made out of the PDF of y (= s in this particular case) through the relation y = ,x. The
above formula shows that the matrix, which minimizes the cost function !A (,) also maximizes
the log-likelihood ratio of x.

Since we do not know A (y) a priori, we instead adopt an arbitrary mutually independent
distribution @(y) =

∏=
8=0 @8 (H8) in the cost function. Defining a PDF consisting of marginal

distribution functions

?̃(y) ≡
=∏
8=0

∫
?H (H0, H1, ..., H=)

∏
9≠8

3H 9 =

=∏
8=0

?̃8 (H8), (8)

we find the following relation

!@ (,) = � [?H (y); @(y)] = � [?H (y); ?̃(y)] + � [ ?̃(y); @(y)] (9)

holds. Since the Kullback-Leibler divergence is known to be positive semi-definite, a distribution
that minimizes the first term in the right-hand-side yields the desired linear transformation y = ,x

for which this term vanishes. In this case the second term gives a discrepancy due to the possible
incorrect choice of @(y). In this sense it would be better to choose a realistic trial function @(y) as
much as possible.

It is known in fact that even for an arbitrary choice of @(y), the correct, gives an extremum
of !@ (,). Hence we solve

m!@ (,)
mF8 9

= 0. (10)
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From

!@ (,) = −� [G] − ln | |, | | − �?H [ln @(y)] ≡ −� [G] − ln | |, | | − �?H [ 5 (y)], (11)

5 (y) ≡ ln @(y), (12)

3, ln | |, | | ≡ ln | |, + 3, | | − ln | |, | | = ln | |1 + 3,,−1 | |
= Tr(3,,−1) = (,−1) 983F8 9 ,

and

3, 5 (y) ≡ 5 ((, + 3,)x) − 5 (,x) = m 5

mH8
3F8 9G 9 ,

we find

3, !@ (,) = �?H
[
−(,−1) 98 − G 9

m 5

mH8

]
3F8 9 . (13)

In order to satisfy (10) the above expectation value should vanish for each index. Multiplying F: 9
to the argument of the expectation value, we find it equivalent to

�?H

[
H:
m 5

mH8

]
+ X:8 = 0. (14)

That is, we require

�?H [i8 (H8)H 9] = X8 9 (15)

with

i8 (H8) ≡ −
3

3H8
ln @8 (H8). (16)

We determine, so that (16) is satisfied for each component choosing plausible forms of @8 (H8).
For @1(H1) we take

@1(H1) =
1
√

2cf
exp

[
− (H1 − ℎ(C, \))2

2f2

]
, (17)

so that i1(H1) = (H1 − ℎ(C, \))/f2. In real experiments, we do not know ℎ(C, \) a priori. However,
as found later, when we take temporal average, the contributions from gravitational waves can be
neglected. In fact, we can set ℎ(C, \) = 0 when we apply @1(H1) to real analysis. As for i2(H2), it
is recommended to take

i2(H2) = 22 tanh H2 (18)

to model a super-Gaussian distribution [8]. Using these expressions in (16) we determine, which
relates each component of y and x as H1 = F11G1+F12G2 and H2 = F22G2. In doing so we replace the
ensemble average � [·] by temporal average of observed values of x which we denote by brackets.
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3. Nonlinear case

We now extend the above analysis to the case observables x(C) and sources s(C) are nonlinearly
related. Our reconstruction problem is now to find a set of functions y = y(x) such that each
component of y(C) is statistically independent with others. For the moment, we assume that this
relation holds at any time and the probability distribution functions (PDFs) of x and y are related
with each other by

%H (y)3=+1H = %G (x)3=+1G = %G (x(y))
����m (x)m (y)

���� 3=+1H, (19)

which means

%H (y) =
=∏
8=0

%̃8 (H8) = %G (x(y))
����m (x)m (y)

���� . (20)

As before, we wish to minimize the KL divergence

!@ (x(y)) = � [%H (y), @(y)] = �%H
[ln %H (y)] − �%H

[ln @(y)], @(y) ≡
=∏
:=0

@: (H:), (21)

with

�%H
[ln %H (y)] =

∫
m (x)
m (y) %G (x(y)) ln

[
m (x)
m (y) %G (x(y))

]
3=+1H

=

∫
%G (x(y)) ln

[
m (x)
m (y)

]
3=+1G +

∫
%G (x(y)) ln %G (x(y))3=+1G, (22)

and

�%H
[ln %H (y)] =

∫
m (x)
m (y) @(x(y)) ln

[
m (x)
m (y) %G (x(y))

]
3=+1H

=

∫
%G (x(y)) ln

[
m (x)
m (y)

]
3=+1G +

∫
%G (x(y)) ln

[
m (y)
m (x) @(y)

]
3=+1G, (23)

so that

!@ (x(y)) =
∫

%G (x(y)) ln %G (x(y))3=+1G −
∫

%G (x(y)) ln
[
m (y)
m (x) @(y)

]
3=+1G. (24)

Wewish tominimize the second term of the right-hand-side of (24) with respect to the function y(x).
Neglecting the first term of the right-hand-side of (24) hereafter, we may rewrite the minization
problem by an action principle

!@ (x(y)) = −
∫

3=+1GL
(
H8 (x),

m8

mG 9
(x)

)
(25)

with the Lagrangian

L = %G (x(y)) ln
[
m (y)
m (x) @(y(x))

]
. (26)
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The action (25) is minimized by a solution of the Euler-Lagrange equation:

X!@ (y)
XH: (x)

=
∑
ℓ

3

3Gℓ
%G (x)

mGℓ

mH:
− %G (x)

m

mH:
ln @: (H:) = 0. (27)

Multiplying this by G 9 and integrating over 3=+1G we find

�%G

[
− mGℓ
mH:
− G 9

m

mH;
ln @: (H:)

]
= 0, (28)

which is a direct extension of (13). Indeed, mGℓ/mH: corresponds to (,−1)ℓ: in the case the
transformation is linear.

4. Memory effect

We can extend the analysis in the case with memory effect dealing with the PDFs over the
entire time span of interest and assuming invertibility. That is, the PDF %G is a functional of x(C∗)
at all times C∗ in the relevant range and it is related to that of y(C∗) as

%G [x(C∗)] [3=+1G(C∗)] = %G [x(C∗)]
∏
U

3=+1G(CU) = %H [y(C∗)]
∏
V

3=+1G(CV) = %H [y(C∗)] [3=+1H(C∗)] .

(29)
In terms of Fourier transformed modes,

G̃8 ( 5U) =
∫

G8 (C)42c8 5UC3C, (30)

the above relation is expressed as

%H [ ỹ( 5∗)]
∏
V

3=+1H( 5V) = %G [x̃( 5∗)]
∏
U

3=+1G( 5U) = %G [x̃( 5∗)], (31)

where 5∗ denotes all the frequencies collectively.
The KL divergence is minimized by the solution of the following Euler-Lagrange equation.

!@ [ ỹ[x̃( 5∗)]]
XH̃: ( 5U)

=
∑
V

∑
ℓ

3

3Gℓ ( 5V)
%G [x̃( 5∗)]

mG̃ℓ ( 5V)
mH̃: ( 5U)

− %G [x̃( 5∗)]
m

mH̃: ( 5U)
ln @: [H: ( 5U)] = 0.

(32)
Once again, by multiplying G: ( 5W) and integrating over

∏
U 3

=+1G( 5U), we obtain a formula

�%G

[
−
mG̃ℓ ( 5W)
mH̃: ( 5U)

− G 9 ( 5W)
m

mH: ( 5U)
ln @: [H: ( 5W)]

]
= 0, (33)

which is to be compared with (13) and (28).
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5. Example

Let us consider a case there are two statistically independent noises, F1( 5 ) and F2( 5 ) that
can be measured by some sensors G1 and G2 as G̃1( 5 ) = F1( 5 ) and G̃2( 5 ) = F2( 5 ) and the strain
channel G0 measureing the gravitational wave ℎ( 5 ) is affected by these two noises nonlinearly as

G̃0 = ℎ( 5 ) + =( 5 ) +
∫

351352 12F1( 51)F2( 52)X( 5 − 51 − 52), (34)

where  12( 51, 52) is an unkown function and =( 5 ) is residual noises. We define

H̃0( 5 ) =G̃0( 5 ) −
∫

351 12( 51, 5 − 51)G̃1( 51)G̃( 5 − 51), (35)

H̃1( 5 ) =G̃1( 5 ),
H̃2( 5 ) =G̃2( 5 ).

Multiplying G̃( 5`)G̃( 5a) the Euler-Lagrange equation (33) by G̃( 5`)G̃( 5a) and integrating over the
phase space, we find〈

−G̃2( 5a)
mG̃1( 5`)
mH̃: ( 5U)

− G̃1( 5`)
mG̃2( 5a)
mH̃: ( 5U)

− G̃( 5`)G̃( 5a)
m

mH̃: ( 5U)
ln @: [CH: ( 5U)]

〉
= 0 (36)

For : = 0 we find

m

mH̃0( 5U)
ln @0( H̃: ( 5U)) = −

1
f2

(
G̃0( 5U) −

∫
351 12(( 51, 5U − 51)G̃1( 51)G̃( 5U − 51)

)
. (37)

Multiplying the above equation by G̃1( 5`)G̃2( 5a) and taking the statistical average, we find〈
G̃1( 5`)Ĝ2( 5a)

m

mH̃0( 5U)
ln @0( H̃: ( 5U))

〉
(38)

=

〈
G̃0( 5U)G̃1( 5`)G̃2( 5a) −

∫
351 12(( 51, 5U − 51)G̃1( 51)G̃1( 5`)G̃2( 5a)G̃( 5U − 51)

〉
= 0

Assuming that G̃1 and G̃2 are stationary independent noises, we find

〈G̃8 ( 5 )G̃ 9 ( 5 ′)〉 = 〈|G̃8 ( 5 ) |2〉X8 9X( 5 − 5 ′). (39)

We can therefore determine the kernel function as

 12( 51, 52) =
〈G̃0( 51 + 52)G̃1( 51)G̃2( 52)〉
〈|G̃1( 51) |2〉〈|G̃2( 52) |2〉

. (40)

Thus this nonlinear model can be solved in this method.

6. Conclusion

The linear ICA has been applied to both iKAGRA data [9] and O3GK data [10] and proven
to be effective for gravitational wave data analysis. The application of the nonlinear ICA proposed
here is now underway.
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