PROCEEDINGS

OF SCIENCE

Control noise reduction of cryogenic suspension in
KAGRA

Masahide Tamaki* on behalf of the KAGRA collaboration

Institute for Cosmic Ray Research, The University of Tokyo,
5-1-5 Kashiwa-no-Ha, Kashiwa City, Chiba, Japan

E-mail: tamaki83@icrr.u-tokyo.ac.jp

In gravitational wave detectors, the laser is used to observe how the distance between mirrors
changes due to space distortions caused by gravitational waves. The displacement of the mirrors is
minute, so the mirrors must be sufficiently isolated from ground vibrations to achieve the required
sensitivity. Therefore, the main mirrors are suspended by nine-stage pendulums in KAGRA, the
gravitational wave detector in Japan. In such a pendulum-based vibration isolator, the mirror
oscillates significantly at the resonant frequency. Hence we need the control system to damp
the resonances, but the noise from the sensors used in such a control system can be a problem.
In fact, the sensitivity of KAGRA was limited by the noise from the cryogenic payload control
system at 10-50 Hz in the previous observation. Therefore, a low-noise control filter was designed
and implemented for use during the previous observing run. As a result, the control noise of the
cryogenic payload at 10-100 Hz was reduced by 2-3 orders of magnitude, and the target sensitivity
for the O4 observing run was achieved at low frequency (below 100 Hz).
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1. Introduction

Gravitational waves are space-time ripples derived from general relativity, and their existence
was predicted by Albert Einstein in 1916 [1]. In 2015, gravitational waves from black hole binary
mergers were directly detected for the first time by the Advanced LIGO detectors [2], finally proving
their existence. In August 2017, the Advanced Virgo detector has joined the observations, and many
gravitational waves from compact binary mergers have been detected [3]. In recent years, follow-up
observations with gamma rays, X-rays, and neutrinos, together with gravitational wave information,
have provided many new insights into the origin of heavy elements and the formation mechanism
of gamma-ray bursts, information that was not available before. The multi-messenger observation,
which aims at solving mysteries through the cooperation of observatories with different observing
means, is developing, and there are high expectations for the gravitational wave observation to serve
as a starting point for such observations [4]. Under these circumstances, the gravitational wave
detector in Japan KAGRA started observations with LIGO (O4 observing run) in May 2023.

Laser interferometric gravitational wave detectors such as LIGO, Virgo, and KAGRA use
lasers to observe minute changes in mirror spacing due to spatial distortions caused by gravitational
waves. Because the displacement of the mirrors is minute, it is necessary to suppress the effect of
ground vibration in order to achieve high sensitivity. Therefore, the ground vibration transmitted
to the mirror at frequencies higher than the resonant frequency is reduced by suspending the mirror
with a multi-stage pendulum-type suspension system. In addition, the mirror is cooled down to
20 K in KAGRA for the reduction of thermal noise [5]. The suspension for it is called cryogenic
payload.

On the other hand, the ground vibration transmitted to the mirror is amplified at the resonant
frequency of the pendulum, so it is necessary to control the pendulum to damp the resonances.
However, the more the resonances are damped, the more the electrical noise from the sensor
used for control (control noise) limits the sensitivity at low frequency [6]. Therefore, we needed
to improve the control to reduce the control noise and achieve the target sensitivity in the O4
observing run. This paper begins with a brief introduction of KAGRA and the cryogenic payload,
then describes the damping control and control noise. We then present our efforts to reduce the
control noise and the results.

2. Cryogenic Payload in KAGRA

2.1 Main Suspension System in KAGRA

KAGRA is a laser interferometric gravitational wave detector with a baseline length of 3 km
located in Kamioka-cho, Hida City, Gifu Prefecture, Japan. KAGRA has sapphire mirrors which
are cooled down to 20 K to reduce thermal noise and is operated in an underground environment to
reduce the influence of ground vibrations [7]. To further reduce the effects of ground vibration, we
use a multi-stage pendulum-type suspension system, which can reduce the vibration transmitted to
the mirror.

Depending on the application, KAGRA uses three different types of suspensions. The largest
suspension, which is called the Type-A suspension, is used for the main sapphire mirrors and
consists of nine stages, with a total height of 13.5 meters (Figure 1). KAGRA has four Type-A
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suspensions as shown in the figure. The top five stages of the Type-A suspension are called Type-A
tower which is at room temperature, while the bottom four stages are called cryogenic payload

which is cooled in the cryostat.
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Figure 1: Type-A suspension in KAGRA. CG illustration of KAGRA layout is by Rey Hori.

2.2 Cryogenic Payload

Platform (PF)

Marionette (MN)
& Recoil mass

Intermediate mass (IM)
& Recoil mass

Test mass (TM)
& Recoil mass

Figure 2: Crygenic payload in KAGRA. The photo of actual payload is taken by Rohan Mehra.

Cryogenic payload in KAGRA is a four-stage pendulum structure with platform (PF), marionette
(MN), intermediate mass (IM), and test mass (TM) from the top (Figure 2). In addition, the MN,
IM, and TM are equipped with a recoil masses which can provide an actuation force that is isolated

from ground disturbances [8].
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As for the sensors on cryogenic payload, the MN and the IM are equipped with photo-reflective
displacement sensors to monitor the relative displacement between the mass and the recoil mass for
each degree of freedom [8]. Furthermore, angular sensing optical levers are installed on the PF, the
MN, and the TM to monitor the angular motion of the masses relative to the ground. In addition,
they are also equipped with a length sensing optical lever to sense the motion along optical axis of
the interferometer [9].

The displacement signal captured by these sensors is passed through a digital filter to the
actuators [10]. The actuator applies the force to the mass to realize damping control, which is
discussed in the next section.

3. Damping Control and Control Noise

3.1 Damping Control for Suspension System

In the case of a multi-stage pendulum vibration isolation system, a high vibration isolation
ratio can be achieved at frequencies above the resonant frequency (left of Figure 3). On the other
hand, the vibration transmitted to the mirror is amplified at the resonant frequency. In this case, the
interferometer cannot maintain a stable state and the observation cannot be performed. Therefore,
a damping control that damps the vibration at the resonant frequency is required.

Damping control is a feedback control in which the displacement of the mirror is locally
detected by a sensor, and a force to cancel it is applied to the mirror by an actuator (right of Figure
3). In other words, when a certain force (disturbance) is applied to the suspension system, a sensor
detects the response of the suspension system and sends a signal to the digital system. In the digital
system, the signal is sent to the actuator through a filter to cancel the effect of the disturbance.
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Figure 3: (Left) Vibration amplification at resonant frequencies and vibration attenuation rates at frequencies
above the resonant frequencies. (Right) Schematic view of damping control.

To damp the resonant peak, we can design a high-pass filter i.e. a filter that differentiates the
signal received from the photosensor in a certain region of the resonant frequency. On the other
hand, at high frequencies above the control band, the gain is reduced by a low-pass filter to suppress
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the effect of noise. Furthermore, we should be careful to provide sufficient phase margin at the
frequency where the gain of the open loop transfer function is 1 (Unity Gain Frequency, UGF).

3.2 Control Noise

Sensitivity e DAC noise
—— Summation of known noises Mirror thermal noise
""" Suspension thermal noise
/ —— Type-B control noise ==+ Shot noise
10~ —— Type-Bp control noise ——- Radiation pressure noise
MICH coupling Laser frequency noise
PRCL coupling —— Laser intensity noise
— Acoustic noise OMC PD dark noise

10-15

Lol

[ I“""

1017

Displacement [m/rtHz]

10-19

-21 S b | |
10 10! 10? 10°

Frequency [Hz]

Figure 4: Control noise during previous observation [6].

Although a low-pass filter is applied at high frequencies, sensor noise is still a problem in
feedback control. In addition, a suppression of vibration and a reduction of noise cannot be
achieved simultaneously. In other words, the more we try to suppress the vibration, the more the
noise is introduced, or vice versa, which is a major problem.

In fact, in the previous observation (O3GK), there was a problem that the noise from the control
system of the cryogenic payload limited the sensitivity around 10 to 50 Hz [6]. The Figure 4 shows
this, where the black line representing the sum of all noise and the light blue line representing the
control noise of the cryogenic payload completely overlaps at 10 to 50 Hz. This means that the
control noise of the cryogenic payload limited the sensitivity in this frequency band.

4. Control Noise Reduction

We introduced a new method of switching the controls depending on the state of the interfer-
ometer, thereby reducing the noise during the observation.

An interferometer is not ready for observation immediately after assembly. In the observation-
ready stage, we want to control the position and angular of the mirror to quickly create an observable
state, so we use a control that emphasizes vibration suppression, even if the noise may be a little
louder. In the previous experiment, the observation was performed under this control, resulting in
a large control noise as described above. However, in the observation stage, it is important to keep
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the stability and noise level low. Therefore, we designed a control filter (hereinafter referred to as
"OBS filter") that reduces the effect of noise while keeping the minimum requirement for vibration
suppression, and switched to this control during the observation phase.

As an example of an observation filter, we present the control of the pitch direction of ITMX
(Figure 5). Note that pitch is one of the six degrees of freedom of the rigid body, and is the direction
in which the mirror bends. The main modification is to apply an elliptic low pass filter with phase
margin more than 20° at the unity gain frequency to reduce the gain at frequencies with higher
gain in the observable-ready stage. This type of control modification has also been applied to other
cryogenic suspension systems.
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Figure 5: Changes in open loop transfer function due to control update (ITMX Pitch). Blue line shows
observation-ready stage, and red line shows observation stage.

The control noise measurements were performed using the FPMI configuration. Here, FPMI
is a Michelson interferometer with a Fabry-Perot cavity in its arm, and its schematic diagram is
shown in Figure 6. In this FPMI, the gravitational wave signal is a differential signal in the arm,
called the DARM signal, and is obtained from the photo detector shown in the Figure 6. A feedback
signal is then fed back to the ETMX to drive the ETMX to maintain the differential displacement of
the arms. To measure the control noise in the FPMI configuration, we then intentionally oscillated
each suspension in each degree of freedom and measured the transfer function from that motion to
the DARM signal. This transfer function was measured by intentionally shaking the suspension,
but the noise from the sensors used for control is always present even when the suspension is not
shaken in this way. By multiplying the amplitude spectral density of the sensor output without
shaking by the transfer function obtained earlier, the control noise can be plotted on the sensitivity
curve. Moreover, the total control noise can be calculated by summing squares for each suspension
since the control noise of each suspension is uncorrelated.
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Figure 6: Schematic view of FPMI.

Figure 7 shows the result of control noise measurement. The control noise line changed from
green to orange, and this means control modification successfully reduced the control noise by
2 ~ 3 orders of magnitude. Moreover, this allowed us to achieve the target sensitivity of 10 Mpc
for the O4 observing run. In addition, we were able to verify that the interferometer operated stably
for at least more than 1 day. The operation test was terminated due to interferometric work before
the observation, but without that, the interferometer would have remained stable for a much longer
time. In any case, the new control was stable enough.
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Figure 7: Control noise reduction by OBS filter.

5. Summary and Outlook

In summary, the newly designed control system has successfully reduced the control noise
in the cryogenic payload by 2 ~ 3 orders of magnitude while maintaining stable interferometer
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operation. This also enabled KAGRA to achieve its target sensitivity at low frequencies for the O4
observing run. However, as shown in Figure 7, we need to further reduce the control noise by 2 ~ 3
orders of magnitude to achieve the target sensitivity for the next observation.

Therefore, as a future prospect, we would like to achieve the final target sensitivity of KAGRA
at low frequencies by reducing the control noise. To achieve this, we should develop the new
control system. In the current control system, the control parameters are determined by empirical
design and adjusted by human hands. However, it should be possible to build an optimal control
system based on numerical simulation. For example, a possible approach would be to decompose
the pendulum vibration into modes based on a numerical model and then perform feedback control
according to the shape of the vibration modes. This method is suitable for KAGRA suspensions,
which are multi-degree-of-freedom oscillating systems and should be able to optimize the trade-off
between control performance and noise more efficiently. In this case, it may be effective to introduce
the H,, method to provide a robust control at the same time even when there are errors between
the model and actual measurements. In addition, the sensors used for the control will need to be
developed with higher performance, so we should work on that as well.
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