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The detection of astrophysical neutrinos from transient sources can help to understand the origin
of the neutrino diffuse flux and to constrain the underlying production mechanisms. In particular,
proton-neutron collisions may produce GeV neutrinos. However, at these energies, neutrino data
from large water Cherenkov telescopes, like KM3NeT and IceCube, are dominated by the well-
known atmospheric neutrino flux. It is then necessary to identify a sub-dominant component
due to an astrophysical emission based on time correlation across messengers. The contribution
covers several methods to search for such a signal in short time windows centered on observed
transient sources, including a novel approach based on the distribution of time differences. Their
performance is compared in the context of subpopulations of astrophysical sources that may show
prompt or delayed neutrino emissions. The outlook for the usage of such techniques in actual
analyses is also presented.
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1. Introduction

Since the discovery of high-energy astrophysical neutrinos from the IceCube Collaboration
in 2013 [1], neutrino telescopes have continuously been monitoring the sky in search of the
corresponding sources. Multi-messenger approaches have allowed identifying some candidates.
In 2017, a high-energy neutrino from IceCube has been detected from the direction of the blazar
TXS 0506+056, in time coincidence with a flare in gamma rays [2]. More recently, several tidal
disruption events have also been associated with neutrinos in IceCube [3, 4].

One key feature to clearly associate neutrinos with an astrophysical source is to rely on the
spatial and temporal coincidences of the signal events. For transient sources, emitting on a short
time scale, such a method is very efficient at reducing the contamination from background neutrino
events, such as the ones originating from atmospheric neutrinos.

In the case of the IceCube GeV sample described in [5, 6], no direction reconstruction is
available at the time of writing, so it is only possible to apply time cuts. The expected background
rate is at the level of 20 mHz. This sample is sensitive to all-flavor neutrinos at energies ranging
from 0.5 to 100 GeV, making it a nice probe for potential GeV neutrino emission.

This work focuses on the search for a short neutrino signal from sub-populations of astrophysical
transient sources. The exact delay Δ𝑡 of the neutrino emission with respect to the time 𝑡0 of the
detection with another messenger is not known. Other studies often employ a conservative 1000 s
time window centered on 𝑡0 [7]. However, in the case of the IceCube GeV sample, this corresponds
to ∼ 20 expected background events, limiting the discovery potential for sources that may emit a
flux corresponding to only a few detectable neutrinos.

As long as no clear detection is reported, the value of Δ𝑡 is not known a priori. One may expect
it to be of the same order within a given population and for a given emission mechanism. It is then
possible to reduce the impact of background events by looking for a coherent excess of neutrinos
with the same delay with respect to 𝑡0 over a set of transients. Additionally, several timings may be
relevant for a given source type, such as precursor, prompt, and delayed emissions.

The goal of this work is to identify subpopulations in a set that may contain sources with no
detected signal neutrinos, sources with a signal at Δ𝑡, or sources with a signal at a different timing.
The Figure 1 shows an illustration of the time distribution of detected events in toy experiments.
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Figure 1: Illustration of the time distribution of neutrino candidate events in toy experiments within 𝑡0±100 s.
Each row corresponds to one realization. The black crosses indicate background events with a Poisson rate
𝑟bkg = 20 mHz (illustrative of the IceCube GeV sample). The red pluses are injected signal events at
Δ𝑡 = −50 s and Δ𝑡 = 20 s, with a width of 2 s.
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2. Method

The main ingredient of the search described here is the relative time {𝑡𝑖} of all detected neutrino
candidates with respect to the considered transient time 𝑡0. For convenience, the analysis is restricted
to a time window [𝑇min, 𝑇max] large enough to contain any kind of signal. To be consistent with
other searches, 𝑇min, 𝑇max = −500 s, 500 s will be employed.

2.1 MLE approach

A usual technique to identify a flaring excess is to define the following likelihood:

L(𝑁, {𝑡𝑖}; 𝑛𝑠,Δ𝑡, 𝜎𝑡 ) =
𝑁∏
𝑖=1

[𝑛𝑠
𝑁
S(𝑡𝑖 ,Δ𝑡, 𝜎𝑡 ) +

(
1 − 𝑛𝑠

𝑁

)
B(𝑡𝑖)

]
, (1)

where 𝑁 is the total number of events, {𝑡𝑖} are their detection times, 𝑛𝑠 is the expected number of
signal events, Δ𝑡, 𝜎𝑡 is the signal central time and its width, and S(B) is the signal (background)
pdf. In the following, S is a Gaussian distribution with 𝜇 = Δ𝑡, 𝜎 = 𝜎𝑡 , and B(𝑡) = 1/(𝑇max−𝑇min).
It is then possible to write the Maximum Likelihood Estimator

MLE = 2 log
(
L(𝑁, {𝑡𝑖}; 𝑛𝑠, Δ̂𝑡, 𝜎̂𝑡 )
L(𝑁, {𝑡𝑖}; 𝑛𝑠 = 0)

)
, (2)

where the hatted terms are the values maximizing the likelihood, while the denominator is the
background-only likelihood. The maximization is done with the iminuit package [8].

The background distribution of MLE 𝑃𝐵 (MLE) is obtained using background-only experi-
ments, as illustrated in Figure 2. The significance of a measurement with MLE = MLEobserved is
then characterized by the p-value 𝑝 =

∫ ∞
MLEobserved

𝑃𝐵 (MLE)dMLE.
For each transient, one may then compute 𝑝 and consider an observation to be significant

if 𝑝 < 3 × 10−3, this would correspond to a ∼ 3𝜎 deviation from the background expectation.
The values of 𝑛𝑠, Δ̂𝑡, 𝜎̂𝑡 may also be recovered to characterize the potential signal. The selection
efficiency of the approach can be evaluated using simulations as shown in Figure 2.

Although such a method has proven its liability for such flare searches, it does not take
into account the correlations of the signal times across several time windows but only performs
independent probes for individual transient.

2.2 PCA approach

As the objective is to separate the full dataset into different subpopulations based on the
presence or the absence of a neutrino signal, clustering techniques are appropriate for the task.
Principal Components Analysis (PCA) is well suited to reduce the dimensionality of the problem
before performing clustering, as initially presented in [9].

The data is summarised by the set {𝑡𝑖} of observed relative times. To make it suitable for PCA,
they are binned in 𝐾 slices such that 𝑛 𝑗 =

∑𝑁
𝑖=1 𝐻 (𝑡𝑖 − 𝜏𝑗)𝐻 (𝜏𝑗+1 − 𝑡𝑖) for 𝑗 = {0, . . . , 𝐾 − 1},

where 𝐻 is the Heavyside step function, and 𝜏𝑗 = 𝑇min + 𝑗 𝑇max−𝑇min
𝐾

. The overall dataset has then a
dimension 𝑀 × 𝐾 , where 𝑀 is the number of analyzed time windows.

PCA is applied to reduce the number of features to one or two using scikit-learn existing
methods [10]. This (these) feature(s) may then be used to easily cut between background events
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Figure 2: Illustration of the MLE (left) and PCA (right) methods. The blue histogram corresponds to the
expected distribution for background events with constant rate 𝑟bkg = 20 mHz. The orange histogram is the
distribution for an injected signal in the search window, with the number of signal events following a Poisson
distribution with 𝜆 = 5 and a time distribution following a Gaussian distribution with 𝜎 = 2 s. The black
line indicates the 3𝜎 threshold derived from the background distribution. In this example, there are only
two sub-populations, those with only background and those with an injected signal, so the PCA threshold is
defined by looking at the first component and using the same strategy as for MLE.

and potentially interesting time windows. To evaluate the performance of the search, it is necessary
to make use of a partially-labeled dataset. The following procedure has been applied:

1. A dataset of pure background events Dbkg is formed. In the following example, this will
consist in pseudo-experiments where no signal is injected but only the expected background.
For actual measurements, one may consider time windows in real data where no transients
were detected.

2. Dbkg is appended to the dataset of time windows of interest Dsearch (corresponding to actual
data or to simulations with some injected signal): D = Dbkg ∪ Dsearch.

3. PCA reduction is performed on the full dataset: D → D★ = 𝑓 (D).

4. The distribution of the remaining features is plotted only for the samples originating from
Dbkg. It is then possible to define a threshold such that any observation exceeding this
threshold would correspond to a 3𝜎 excess.

5. The observed 𝑓 (Dsearch) are compared with this threshold to search for any significant event.

A simple example is shown in Figure 2. The performance will be compared with other methods
in Section 3. As compared to the likelihood approach, the PCA approach properly covers the needs
for the search of subpopulations with similar timings with respect to the detected transient.

2.3 PeANuTS method

Going back to the basics, the current search consists in searching for consistent deviations
from the Poisson expectation (that correctly described the background). The available database
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consists of a succession of neutrino candidate events characterized by their relative detection times
with respect to the considered transient source detection time, across time windows covering a
population of such sources.

When considering the event times as our only input, a divergence from the Poisson expectation
may be identified by plotting the inter-arrival time 𝛿𝑡𝑖 = 𝑡𝑖 − 𝑡𝑖−1 distribution and looking for
deviations from an exponential distribution 𝑝(𝑥) = 1/𝑟 exp(−𝑥/𝑟), where 𝑟 is the expected rate.
This also applies if one computes the delay between a random time and the next (or previous) event.

In the following, 𝑀 time windows of interest (for instance±500 s around each selected transient
source) are considered and the time of each event is noted 𝑡𝑚,𝑖 , where 𝑚 is the label of the time
window and 𝑖 is indexing the event in the time window. For each event (𝑚, 𝑖), one may compute

Δ𝑡
𝑛,−
𝑚,𝑖

=

{
𝑡𝑚,𝑖 − 𝑡𝑚,𝑖−1, for 𝑛 = 𝑚,
min

[
𝑡𝑚,𝑖 − 𝑡𝑛, 𝑗

]
𝑡𝑛, 𝑗<𝑡𝑚,𝑖

, for 𝑛 ≠ 𝑚,

and Δ𝑡
𝑛,+
𝑚,𝑖

=

{
𝑡𝑚,𝑖+1 − 𝑡𝑚,𝑖 , for 𝑛 = 𝑚,
min

[
𝑡𝑛, 𝑗 − 𝑡𝑚,𝑖

]
𝑡𝑛, 𝑗>𝑡𝑚,𝑖

, for 𝑛 ≠ 𝑚,

This set is noted D𝑚,𝑖 =

{
Δ𝑡
𝑛,−
𝑚,𝑖
,Δ𝑡

𝑛,+
𝑚,𝑖

∀𝑚 ∈ {1, . . . , 𝑀}
}

and contains 2𝑀 different values, as
illustrated in Figure 3. For “border” events (i.e., first and last events of any time window), the events
right before/after the search time window are used as fill values (or the related value may be set to
∞, which would have no negative impact on the final sensitivity).
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Figure 3: Left: Illustration of the definition of the Δ𝑡
𝑛,−
𝑚,𝑖

and Δ𝑡
𝑛,+
𝑚,𝑖

values. Right: The blue step histogram
corresponds to pure background, well fitted by an Erlang distribution shown in dashed red. The blue-filled
and orange step histograms are the background and signal distributions with the same inputs as in Figure 2.

From the discussion above, if data is well described by a Poisson background with rate 𝑟bkg, it
is expected that D𝑚,𝑖 values follow an exponential distribution with 𝜆 = 1/𝑟bkg. This check may be
formalized by computing, for each event (𝑚, 𝑖),

TS𝑚,𝑖 = −
∑︁

Δ𝑡∈D𝑚,𝑖

log
[
1 − exp(−𝑟bkgΔ𝑡)

]
. (3)

The test statistic TS follows an Erlang distribution (Erlang(𝑥; 𝑘) = 𝑥𝑘−1𝑒−𝑥/(𝑘 −1)!) with 𝑘 = 2𝑀 .
A right tail might appear for background events that would accidentally fall close to where signal
clusters are located, as illustrated in the right panel of Figure 3. This method is called PeANuTS in
the following, for Poisson-expectation Anomaly for Neutrino Transient Source Search.
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As opposed to the MLE and PCA approaches, one value per event is computed instead of
one per time window. It is then necessary not only to define a threshold TSthr to select interesting
events, but also to choose the minimum number of events 𝑁min passing this threshold in a given
time window to characterize an interesting excess. The 3𝜎 threshold TSthr can be found using the
Erlang inverse survival function. The cut 𝑁min is then useful to reduce the impact of the right tail
mentioned in the above paragraph; 𝑁min = 2 is sufficient to remove all such background events.

3. Results

To compare the three methods presented in Section 2, a toy scenario is considered :

• Background rate is fixed to 20 mHz, representative of the expected background in IceCube
GeV neutrino sample [5] taken as example.

• The injected signal in a given time window is characterized by a strength 𝑛𝑆 that is the
Poisson mean expected value. A Gaussian temporal profile, with mean 𝑇0 and sigma 𝜎𝑇 , is
considered. The typical values used for 𝑇0 and 𝜎𝑇 are 0 s and 0.5/2/5 s, respectively.

• A total of 𝑀 = 200 time windows is considered, and a signal is injected in 20% of them.

The comparison is then performed by simulating 10000 times such a scenario, referred to as
pseudo-experiments. The efficiency of a given method is then evaluated as the fraction of time
windows over all pseudo-experiments that are above the 3𝜎 threshold as defined in Section 2 for
each method. For the new TS approach, the value of 𝑚min is set to 2. The left panel of Figure 4
shows the results as a function of the injected signal strength, for different signal widths.

As expected, the MLE method is relatively robust with respect to the value of 𝜎𝑇 , as there is a
corresponding fit parameter. However, as this approach only considers time windows independently,
it fails to achieve high efficiencies, especially for a low number of events, this is also shown by the
presence of a long tail on the signal distribution in Figure 2. The PCA method is performing very
well for short signals, where it is easier to identify a principal component within the dataset D.
For 𝜎𝑇 < 1 s, the latter may simply be the number of events in the bin corresponding to the signal
window. For longer signals, the performance worsens significantly. Then, the PeANuTS approach
proposed here generally outperforms both MLE and PCA. Though it also has the same preference
towards small signals, it is still efficient for larger 𝜎𝑇 . Compared to the two other methods, the
signal strength threshold (corresponding to > 50% selection efficiency) is lowered by factor 1.2 to
3 which, in turn, would correspond to a similar improvement in the flux constraints.

Two additional scenarios are then considered to cover cases where several timings are involved:

(a) 20% of the time windows have 𝑇0 = 0 s, and another 20% have 𝑇0 = 100 s.

(b) 20% of the time windows have 𝑇0 = 0 s, 20% have 𝑇0 = 100 s, and 20% have 𝑇0 = 300 s.

In both cases, the rest of the parameters do not change. For the PCA approach, as multiple clusters
are expected to form for these new scenarios, the two first components are used (instead of only
the first one) and the threshold is based on the bi-dimensional z-score of a point with respect to
the background expected distribution (obtained from Dbkg). The related efficiencies are shown in
the right panel of Figure 4. The MLE results are relatively insensitive to these different scenarios
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Figure 4: Comparison of the signal selection efficiencies for the three methods (MLE in blue, PCA in red,
PeANuTS in green) varying 𝑛𝑆 from 0 to 10, for the toy scenario with 𝑇0 = 0 s (left) and for the two additional
scenarios involving multiple signals (right). In the left panel, the line styles correspond to different values
for 𝜎𝑇 . In the right panel, they are used to distinguish the different sets of 𝑇0 values.

as 𝑇0 corresponds to a free parameter in the fit. On the contrary, the performance of the two other
methods degrades significantly, as the signal is less precisely defined and therefore more difficult to
identify. Nevertheless, the PeANuTS method is still favored with respect to MLE and PCA.

4. Summary and outlooks

Two common techniques using a Maximum Likelihood Estimator or Principal Component
Analysis are compared with a new approach called PeANuTS in the context of a search for neutrino
emission from subpopulations of transient sources. The latter achieves higher efficiencies as it
strongly benefits from the potential correlations of signal timings in several time windows.

The new method may be used for searches in conservative time windows meant to catch any
precursor, prompt, or slightly delayed signal. Notably, it may strongly enhance the discovery
potential for neutrino samples for which the background rate is not low enough to allow claiming a
discovery as soon as one or very few events are observed in this window. For instance, it is relevant for
GeV neutrinos at large Cherenkov telescopes, as such samples are dominated by optical noises and
by irreducible atmospheric neutrinos in this energy range. Moreover, the low number of Cherenkov
photons emitted by GeV neutrinos does not allow for any precise direction reconstruction with
current methods, limiting the possibility to benefit from using neutrino-source spatial correlations.
This is then suited for the IceCube GeV neutrino sample [5] or for the under-development similar
sample in KM3NeT [11].

This method may be applied for binary mergers as detected with gravitational waves or for
gamma-ray bursts seen throughout the electromagnetic spectrum. For both these categories, large
catalogs (e.g., [12, 13], respectively) are already available and may therefore be employed. For
these objects, the existence and timing of the neutrino emission are currently unknown as it has
never been observed, making it an interesting exploratory field.
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As the PeANuTS test statistic is quite general and only relies on arrival times, it could also be
applied well beyond the scope presented here. Furthermore, adjustments may be possible to cover
for potential non-Poissonian effects in the data or to include additional inputs in the analysis.
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