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It is currently well established that proton and helium constitute the main component of cosmic
radiation in the energy range from tens of GeV to hundreds of TeV. Their direct detection and
separation have been carried out in the past years using several space-based instruments and
long-flying balloons, while ground-based experiments provided results at high energies but with
large systematics due to the limited mass resolution. Surprisingly, two structures were found in
the direct measurements of individual proton and helium spectra which deviates from the single
power law model, proposed by standard acceleration and propagation mechanisms. Moreover,
results from ground-based experiments opened the scenario of a light component (i.e. p+He)
knee in the cosmic ray spectrum, even with large uncertainties. The p+He direct measurement,
using looser selection cuts compared to individual p and He analyses, besides giving a valuable
cross-check, can enlarge the event statistics and then extend the energy range to larger values,
covering an overlap region between direct and indirect measurements, and exploring it for the first
time with high precision. Among the space-based cosmic ray detectors in operation at present, the
DArk Matter Particle Explorer (DAMPE) has the capability of providing results on p+He up to
the highest energies, thanks to its large acceptance and deep calorimeter. In this work, the p+He
spectrum measured up to 300 TeV, using 6 years of data collected with the DAMPE satellite, will
be presented.
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1. Introduction

In recent years, various experiments provided interesting results regarding Galactic Cosmic-
Ray (GCR) physics. Experimental findings have revealed deviations in CR nuclei spectra from
the expected power law predicted by conventional acceleration mechanisms [1] manifested in a
hardening of the spectrum at hundreds of GeV [2–18], followed by a softening above 10 TeV [17–19].
Current-generation space-borne detectors can provide precise CR measurements, that allow us to
further explore the aforementioned features and eventually clarify GCR acceleration and propagation
mechanisms. Specifically, the DAMPE (DArk Matter Particle Explorer) space mission, launched in
December 2015, was designed to study GCRs up to hundreds of TeV, e− + e+ and gamma rays up to
∼10 TeV, and to search for indirect signatures of dark matter. This detector provided insightful results
regarding CR physics [16–18]. The DAMPE instrument comprises four sub-detectors, namely: a
plastic scintillator detector (PSD) for electron-gamma ray discrimination and charge measurement,
a silicon-tungsten tracker-converter (STK) for charged particle direction measurement and photon
conversion, a bismuth germanium oxide (BGO) imaging calorimeter, with a total depth of more
than 31 radiation lengths and ∼1.6 nuclear interaction lengths, which measures particle energy
and distinguishes between hadronic and electromagnetic showers, and a neutron detector (NUD)
that collects neutrons from hadronic showers for improved event identification. DAMPE’s deep
calorimeter, large acceptance, and good energy resolution make it ideal for measuring cosmic
rays up to a few hundred TeV [20]. In this study, the high energy spectrum for p+He particles
up to 300 TeV measured using six years of flight data acquired by DAMPE is presented. By
using a combined sample of protons and helium nuclei, the event selection criteria can be relaxed
compared to individual proton or helium samples, ensuring minimal contamination and yielding
increased statistics. As a result, the additional statistics enable an extension of the energy range up
to ∼300 TeV, establishing a connection between space-based and ground-based measurements, and
exploring this energy region from space for the first time with relatively small uncertainties. More
details on this analysis and a deeper discussion can be found in [21].

2. Monte Carlo simulations

Monte Carlo (MC) simulations are essential to interpret the detector response to different
particles. In this work, the GEANT4 version 4.10.5 toolkit [22] and the FTFP_BERT physics
list∗ are used to simulate protons (10 GeV - 100 TeV) and helium nuclei (10 GeV - 500 TeV).
For higher energy ranges, namely 100 TeV - 1 PeV for protons and 500 TeV - 1 PeV for helium,
the EPOS-LHC physics list [23] is used. Prior to the space deployment of DAMPE, beam tests
at CERN were conducted [24–26], demonstrating a fair agreement between the measured data
and simulations. To assess the systematic uncertainty arising from hadronic interaction models,
additional MC data are generated using alternative models. Specifically, FLUKA 2011.2x [27] with
the DPMJET3 model [28–30] is used for helium nuclei, while GEANT4-QGSP_BERT is employed
for protons. Comparing the spectra computed from these two MC samples provides an estimate for
the systematic uncertainty related to the hadronic interaction model.

∗https://geant4.web.cern.ch/node/302

2

https://geant4.web.cern.ch/node/302


P
o
S
(
I
C
R
C
2
0
2
3
)
1
3
8

p+He spectrum with DAMPE Francesca Alemanno

3. Event selection and effective acceptance

In this analysis, data from 72 months of DAMPE operation (from January 2016 to December
2021) are used, with the exclusion of events occurring within the South Atlantic Anomaly (SAA)
region. After accounting for instrumental dead time, on-orbit calibration time, a period affected by a
significant solar flare between September 9 and September 13, 2017†, and the time spent in the SAA
passage [31], a total live time of around ∼14.5×107 s remains, which corresponds to approximately
76% of the total operation time. Both the flight data and Monte Carlo (MC) simulations undergo
an initial event preselection, followed by the selection of proton and helium.

(i) Preselection - The preselection consists of the following criteria:

• Events capable of initiating a shower at the top of the calorimeter are selected by requiring
the high energy trigger (HET) activation‡.

• A threshold on the deposited energy in the calorimeter is set at 20 GeV to mitigate the
influence of the geomagnetic rigidity cutoff [33].

• To discard most events entering from the sides of the calorimeter, the energy deposited in any
single layer of the BGO calorimeter must be lower than 35% of the total energy.

• A well-contained lateral shower spread within the calorimeter is ensured by requiring the
shower axis to fall within a central region covering 93% of the calorimeter width. Additionally,
events with the maximum energy deposition occurring at the lateral edges of the calorimeter
are rejected.

(ii) Track selection - The incoming particle’s track is reconstructed using the STK [34], and
the highest quality events are selected by combining the STK information with measurements from
other sub-detectors. To ensure accurate selection, consistency between the STK track and the signal
in the PSD is required, along with a match between the reconstructed track in the STK and the
shower axis in the BGO calorimeter.

(iii) Charge selection - CR nuclei are selected based on the energy deposit in the PSD, which
is proportional to Z2 according to the Bethe-Bloch equation (where Z is the charge of the incident
particle). Since the energy loss depends on both the particle’s charge and its primary energy,
the charge selection is performed in different energy bins. Figure 1 illustrates the PSD charge
distributions for three energy bins and their comparison with MC data. The PSD energy distributions
in each bin are fitted using a Landau convoluted with a Gaussian function (LanGaus), yielding the
most probable value (MPV), the Landau width, and the Gaussian sigma. To model the dependence of
MPV and sigma values on the total energy deposited in the calorimeter, a fourth-order polynomial
function of the logarithm of the energy is used to fit the obtained values. This allows for the
determination of charge selection conditions (represented in Figure 1 by vertical dashed lines)
with a maximum value of MPVHe + 6𝜎He and a minimum value of MPVp - 2𝜎p (with 𝜎 =√︃
𝑊𝑖𝑑𝑡ℎ2

Landau + 𝜎2
Gaus). These limits are optimized to maximize statistics while maintaining a low

background level (≲ 0.4% up to 10 TeV).
†https://solarflare.njit.edu/datasources.html
‡The HET condition corresponds to an energy deposition exceeding around 10 MIPs in the first three BGO layers and

over 2 MIPs in the fourth layer [32]

3

https://solarflare.njit.edu/datasources.html


P
o
S
(
I
C
R
C
2
0
2
3
)
1
3
8

p+He spectrum with DAMPE Francesca Alemanno

0 5 10 15 20 25 30 35

PSD Global Energy (MeV)

0

5

10

15

20

25

30

35

40

3
10×

N
u
m

b
e
r 

o
f 
e
v
e
n
ts

 

Flight data

Langaus fit protons

Langaus fit helium

/TeV < 0.251
dep

0.158 < E

0 5 10 15 20 25 30 35

PSD Global Energy (MeV)

0

10

20

30

40

50

60

N
u
m

b
e
r 

o
f 
e
v
e
n
ts

 

Flight data

Langaus fit protons

Langaus fit helium

/TeV < 15.8
dep

10.0 < E

Figure 1: Distributions of PSD global energy (mean value of the energy released in the two DAMPE PSD
layers), for events with deposited energy in the BGO calorimeter within 158-251 GeV (left) and 10.0–15.8 TeV
(right). Grey points indicate flight data, while the blue and magenta lines represent the LanGaus fit used to
retrieve the charge selection condition. The red vertical dashed lines show the charge selection ranges for
p+He. The contamination from Lithium and heavier nuclei is negligible in the p+He analysis.

After applying the described selection cuts, the effective acceptance 𝐴i (shown in Figure 2,
left) is evaluated using the following formula:

𝐴i(𝐸 i
T) = 𝐺 ×

𝑁 (𝐸 i
T, sel)

𝑁 (𝐸 i
T)

. (1)

𝐺 is the geometrical factor used to generate MC data, 𝑁 (𝐸 i
T) indicates the number of MC generated

events in the i-th bin of primary energy (𝐸T), and 𝑁 (𝐸 i
T, sel) represents the number of MC events

that pass the selection cuts.

4. Energy measurement and p+He flux

For proton and helium, approximately 35% to 45% of the total energy is contained in the
DAMPE calorimeter. Consequently, an unfolding procedure (as described in [35]) is adopted to
determine the energy spectrum of the incoming particles. The actual number of events in the i-th
bin of true energy, 𝑁 (𝐸 i

T), can be obtained using the following expression:

𝑁 (𝐸 i
T) =

𝑛∑︁
𝑗=1

𝑃

(
𝐸 i

T |𝐸
j
O

)
𝑁 (𝐸 j

O), (2)

with 𝑃

(
𝐸 i

T |𝐸
j
O

)
the response matrix derived from MC simulations (see Figure 2, right) and 𝑁 (𝐸 j

O)
the number of observed events in the j-th bin of energy deposited in the calorimeter (𝐸 j

O). After
the unfolding, the p+He flux can be obtained. In general, the flux for each energy bin, Φi, can be
expressed as:

Φi =
Δ𝑁i

Δ𝑇 × 𝐴i × Δ𝐸i
, (3)

where 𝑁i is the number of events in the i-th energy bin after the unfolding, Δ𝑇 the total live time,
𝐴i the acceptance in the i-th bin, and Δ𝐸i the width of the i-th energy interval. The p+He flux
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Figure 2: Acceptance for various progressive selection cuts (left) and response matrix (right, [21]) derived
from MC simulations of proton and helium. The colors in the matrix represent the probability for an event
in an incident energy bin to migrate to different deposited energy bins.
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Figure 3: p+He spectrum measured with DAMPE (red circles) compared with indirect p+He measurements
from ARGO-YBJ+WFCT [36], HAWC [37], KASCADE [38] and EAS-TOP+MACRO [39] (see also [21]).

is presented in figure 3 in the energy range from 46 GeV to 316 TeV, compared to indirect p+He
measurements. The error bars represent the 1𝜎 statistical uncertainties. The continuous bands
indicate the systematic uncertainties related to the analysis procedure (inner band) and the overall
systematic uncertainties (outer band), including the uncertainties of the hadronic interaction model
which represent the most significant contributor, accounting for approximately 10-15%. Other
sources of uncertainties, associated with the analysis procedure, are the differences between MC
and satellite data when calculating the efficiencies of various selection cuts. Additionally, variations
in the MC proton and helium mixtures are considered, affecting the spectrum by a few percent and
included within the inner systematic band. The high energy region (approximately from 7 TeV to
130 TeV) of the proton+helium spectrum has been fitted using a smoothly-broken power-law (SBPL)
function§. The fit indicates the presence of a spectral softening at 28.8+6.2

−4.4 TeV with a significance
of 6.6𝜎 and confirms the previous DAMPE results in both proton and helium spectra [17, 18].

§a similar approach was adopted in previous studies such as [17, 18, 40, 41]

5



P
o
S
(
I
C
R
C
2
0
2
3
)
1
3
8

p+He spectrum with DAMPE Francesca Alemanno

Moreover, the result from this work is consistent with indirect measurements, although further
observations from future space-borne experiments (e.g., HERD [42, 43]) and a spectral extension
at higher energies are required to provide further insights. Notably, the p+He spectrum provides a
new indication of a potential second hardening around 150 TeV, supported by preliminary findings
from the HAWC collaboration [44], and giving hints to the existence of PeVatrons [45].

5. Summary

The DAMPE p+He spectral measurement, in the energy range from 46 GeV to 316 TeV,
was presented in this work. This analysis confirms the presence of a spectral softening, with the
unprecedented significance of 6.6𝜎. Considering the combined contribution of proton and helium
instead of analyzing them individually, results in additional statistics, allowing the exploration of
higher energies while minimizing background effects. Consequently, these findings establish a
connection between direct and indirect cosmic-ray measurements, demonstrating a good overall
agreement and providing the hint for a new hardening at ∼150 TeV.
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